Instructions: Answer all 11 problems. Show your work: even correct answers may receive little or no credit if a method of solution is not shown. Calculators, notes, cell phones, and other materials are not permitted.

You may find the following helpful:

$$\bullet \ \operatorname{comp}_{\mathbf{a}} \mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}$$

$$\bullet \ proj_ab = \left(\frac{a \cdot b}{|a|^2}\right)a$$

$$\bullet \ \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

•
$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|}$$

•
$$\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{|\mathbf{T}'(t)|}$$

•
$$\mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{N}(t)$$

•
$$\kappa = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3}$$

1. Find the area of the parallelepiped determined by the vectors $\langle 1, 1, 0 \rangle$, $\langle 2, 0, 2 \rangle$, and $\langle -1, 1, 1 \rangle$.

2. Vectors \mathbf{a} and \mathbf{b} are shown. Draw the vectors $\mathbf{a} + \mathbf{b}$ and $\mathbf{a} - \mathbf{b}$. Label your vectors clearly.

3. Find an equation for the plane containing the line x = 2t, y = 3 - t, z = 1 + 3t and the point (1, 3, -2).

1. Find the work done by a force $\mathbf{F} = \langle 2, 1, 1 \rangle$ that moves an object from $(0, 0, 0)$ to $(1, 3, 5)$ along a straight line (wineasurements in Newtons and meters, respectively).	ith
5. Find the point of intersection of the line $x = 1 + t$, $y = -t$, $z = 1 + 3t$ and the plane $3x + 2y + z = 6$.	

- 7. This question concerns the quadric surface $\frac{x^2}{4} + y^2 z = 1$.
 - a) Is the intersection of the surface with z = 0 an ellipse, a parabola, or a hyperbola?

b) Is the intersection of the surface with y = 3 an ellipse, a parabola, or a hyperbola?

8.	Find an equation for the tangent line to the space curve $\mathbf{r}(t) = \langle t^2, e^t, e^{-t} \rangle$ at the point $(0, 1, 1)$.	
9.	Find an equation for the curve of intersection of the cylinder $y = z^2$ with the paraboloid $x = 3z^2 + y^2$.	

10. Find the length of the curve $\mathbf{r}(t) = \langle \cos(2t), t, \sin(2t) \rangle$ for $0 \le t \le 3$.

11. Calculate the curvature of $\mathbf{r}(t) = \langle \cos t, \sin t, t^2 \rangle$ when $t = \frac{\pi}{2}$.