Math 259

Chapter 11 Exam

INSTRUCTIONS: Answer all problems. Show your work: even correct answers may receive little or no credit if a method of solution is not shown. Calculators, notes, cell phones, and other materials are not permitted.

NAME. _____

You may find the following helpful:

• An equation for the tangent plane to the level surface F(x, y, z) = k at the point (x_0, y_0, z_0) :

$$F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0$$

• Second derivative test for a critical point (a, b) of f(x, y):

$$D(a,b) = f_{xx}(a,b)f_{yy}(a,b) - [f_{xy}(a,b)]^{2}$$

- If D > 0 and $f_{xx}(a, b) > 0$, then (a, b) is a local minimum;
- If D > 0 and $f_{xx}(a, b) < 0$, then (a, b) is a local maximum;
- If D < 0, then (a, b) is a saddle point.

1. In the contour plot of f(x, y) shown below lighter shades are higher, the x-axis is horizontal, the y-axis is vertical, and the point (0, 0) is in the center.

a) Estimate the value of $D_{\mathbf{u}}f(0,0)$ when $\mathbf{u} = \langle 0, -1 \rangle$.

b) Is $D_{\mathbf{u}}f(0,0)$ positive or negative when $\mathbf{u} = \langle 1, 0 \rangle$?

2. Find the position function of a particle with velocity $\mathbf{v}(t) = \langle 0, 6t, 4e^{2t} \rangle$ and initial position $\mathbf{r}(0) = \langle 1, 0, 1 \rangle$.

3. Explain why the limit does not exist: $\lim_{(x,y)\to(0,0)} \frac{x^2 - 3y^2}{x^2 + y^2}.$

4. Find an equation for the tangent plane to the surface $z = \sqrt{x-y}$ at the point (5, 1, 2).

5. Find $\frac{\partial w}{\partial t}$ if $w = xe^{yz}$, $x = s \ln t$, y = s, and z = ts.

6. Find $\frac{\partial z}{\partial x}$ when $xyz = \cos z$.

7. Find the maximum rate of change of the function $f(x, y) = xy^2 - x^2$ at the point (1,3) and the direction in which it occurs (the direction does not need to be a unit vector).

8. Calculate $D_{\mathbf{u}}f(1,2)$ for $f(x,y) = \frac{y^2}{x}$ and $\mathbf{u} = \left\langle \frac{2}{3}, \frac{\sqrt{5}}{3} \right\rangle$.

9. Find and equation for the tangent plane to the surface $x = yz - z^2$ at the point (3, 4, 3).

10. Find the critical points of $f(x, y) = x^3 - 6xy + 4y^3$ and determine if each is a local minimum, local maximum, or a saddle point.