$$
f(x, y)=e^{x} \cos y
$$

1. Sketch the curves of intersection of $z=e^{x} \cos y$ with the planes $x=-1, x=0$, and $x=1$.

2. Sketch the curves of intersection of $z=e^{x} \cos y$ with the planes $y=0, y=\frac{\pi}{6}$, and $y=\frac{\pi}{2}$.
\qquad

| | | | | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | |

3. The curve of intersection of $z=e^{x} \cos y$ with the plane $x=1$ has tangent line $\mathbf{r}(t)=\langle 1, t, e\rangle$ at the point $(1,0, e)$. Find an equation for the tangent line to the curve of intersection of $z=e^{x} \cos y$ with the plane $y=0$ at the point $(1,0, e)$.
4. The two tangent lines you found in the previous problem determine a plane called the tangent plane to the surface $z=e^{x} \cos y$. Find an equation for this plane.
