Name(s): Math 259

LINEAR APPROXIMATION, DIFFERENTIALS, AND THE GRADIENT VECTOR

March 21, 2014

Definiton. The gradient vector of f(x, y) is

$$\nabla f = f_x(x,y)\mathbf{i} + f_y(x,y)\mathbf{j} = \langle f_x(x,y), f_y(x,y) \rangle$$

Using the gradient vector, we can write the equation of the tangent plane to the surface z = f(x, y) at (x_0, y_0, z_0) as $z - z_0 = \nabla f(x_0, y_0) \cdot \langle x - x_0, y - y_0 \rangle$.

1. Find an equation for the tangent plane to the surface $z = y + \sin\left(\frac{x}{y}\right)$ at (0,3,3).

The tangent plane to z = f(x, y) at (x_0, y_0, z_0) lies close to the surface near (x_0, y_0, z_0) . This allows us to use the tangent plane to approximate values of f(x, y) when (x, y) is near (x_0, y_0) . For example, the tangent plane to $z = e^x \cos y$ at (1, 0, e) is z = ex and so $e^{0.9} \cos(0.1) \approx 0.9e$ (using a calculator shows that $0.9e \approx 2.446453646$ while $e^{0.9} \cos(0.1) \approx 2.447315341$).

2. Use your tangent plane from the previous problem to approximate $f\left(\frac{1}{5}, \frac{16}{5}\right)$ for $f(x, y) = y + \sin\left(\frac{x}{y}\right)$.

Theorem. The directional derivative of f in the direction of a unit vector \mathbf{u} is the vector component of ∇f in the direction of \mathbf{u} :

$$\boxed{D_{\mathbf{u}}f(x,y) = \nabla f \cdot \mathbf{u}}$$

3. Calculate $D_{\mathbf{u}}f(0,3)$ for $f(x,y) = y + \sin\left(\frac{x}{y}\right)$ and $\mathbf{u} = \langle \frac{1}{2}, \frac{\sqrt{3}}{2} \rangle$.

4. Determine which direction for **u** maximizes the directional derivative $D_{\mathbf{u}}f(x,y)$. Hint: apply the formula $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}||\mathbf{b}|\cos\theta$ and determine which θ maximizes the directional derivative.

5. Suppose you are at the point (0,3,3) in the surface $z=y+\sin\left(\frac{x}{y}\right)$. Which direction should you go in order to climb fastest?