Proposition. The mass of a lamina with density \(\rho(x, y) \) occupying region \(D \) in the \(xy \)-plane is

\[
m = \int\int_D \rho(x, y) \, dA.
\]

The moments about the \(x \)-axis and \(y \)-axis of the same lamina are (respectively)

\[
M_x = \int\int_D y \rho(x, y) \, dA \quad \text{and} \quad M_y = \int\int_D x \rho(x, y) \, dA.
\]

The center of mass of the lamina is \((\overline{x}, \overline{y})\) where \(\overline{x} = \frac{M_y}{m} \) and \(\overline{y} = \frac{M_x}{m} \).

1. Find the center of mass of a lamina with density \(\rho(x, y) = y \) occupying the triangular region bounded by \(x = 0, y = x, \) and \(y = 2 - x \).

Proposition. The moment of inertia (also called the second moment) of a particle of mass \(m \) at distance \(r \) from the axis of rotation is \(mr^2 \). For a lamina with density \(\rho(x, y) \) occupying region \(D \) in the \(xy \)-plane, the moments of inertia about the \(x \)-axis and \(y \)-axis are (respectively)

\[
I_x = \int\int_D y^2 \rho(x, y) \, dA \quad \text{and} \quad I_y = \int\int_D x^2 \rho(x, y) \, dA.
\]

The moment of inertia about the origin is

\[
I_0 = \int\int_D (x^2 + y^2) \rho(x, y) \, dA.
\]
2. Find the moments of inertia (I_x, I_y, and I_0) of a lamina with density $\rho(x, y) = x$ and occupying $D = \{(x, y) \mid x \geq 0, \ y \geq 0, \ x^2 + y^2 \leq 1\}$.

3. Evaluate the integral $\int\int\int_C xyz \, dV$ where $C = \{(x, y, z) \mid 0 \leq x \leq 1, \ 1 \leq y \leq 2, \ 2 \leq z \leq 3\}$ (this gives the mass of the cube C with density $\rho(x, y, z) = xyz$).