NAME(S): MATH 259

Moments

Proposition. The mass of a lamina with density $\rho(x, y)$ occupying region D in the xy-plane is

$$m = \iint_D \rho(x, y) \ dA$$

The moments about the x-axis and y-axis of the same lamina are (respectively)

$$M_x = \iint_D y\rho(x,y) \ dA \ \text{and} \ M_y = \iint_D x\rho(x,y) \ dA.$$

The center of mass of the lamina is $(\overline{x}, \overline{y})$ where $\overline{x} = \frac{M_y}{m}$ and $\overline{y} = \frac{M_x}{m}$.

1. Find the center of mass of a lamina with density $\rho(x, y) = y$ occupying the triangular region bounded by x = 0, y = x, and y = 2 - x.

Proposition. The moment of inertia (also called the second moment) of a particle of mass m at distance r from the axis of rotation is mr^2 . For a lamina with density $\rho(x, y)$ occupying region D in the xy-plane, the moments of inertia about the x-axis and y-axis are (respectively)

$$I_x = \iint_D y^2 \rho(x, y) \ dA \text{ and } I_y = \iint_D x^2 \rho(x, y) \ dA.$$

The moment of inertia about the origin is

$$I_0 = \iint_D (x^2 + y^2) \rho(x, y) \ dA.$$

2. Find the moments of inertia $(I_x, I_y, \text{ and } I_0)$ of a lamina with density $\rho(x, y) = x$ and occupying $D = \{(x, y) \mid x \ge 0, y \ge 0, x^2 + y^2 \le 1\}$.

3. Evaluate the integral $\iiint_C xyz \ dV$ where $C = \{(x, y, z) \mid 0 \le x \le 1, \ 1 \le y \le 2, \ 2 \le z \le 3\}$ (this gives the mass of the cube C with density $\rho(x, y, z) = xyz$).