Name:

Instructions: Answer all 18 problems. Show your work: even correct answers may receive little or no credit if a method of solution is not shown. There is no need to simplify your solutions. Calculators, notes, cell phones, and other materials are not permitted.

Some useful formulas:

- Derivative of a polar curve:  $\frac{dy}{dx} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta r\sin\theta};$
- Arc length:  $L = \int_a^b \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} \ d\theta$  or  $L = \int_\alpha^\beta |\mathbf{r}'(t)| \ dt$
- $\operatorname{proj}_{\mathbf{a}}\mathbf{b} = \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2}\right)\mathbf{a}$
- $\bullet \ \mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$
- $\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|}$
- $\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{|\mathbf{T}'(t)|}$
- $\mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{N}(t)$
- $\kappa(t) = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3}$
- An equation for the tangent plane to the level surface F(x, y, z) = k at the point  $(x_0, y_0, z_0)$ :

$$F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0$$

- Distance from the point  $(x_1, y_1, z_1)$  to the plane ax + by + cz + d = 0:  $\frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}$
- $\mathbf{F} = m\mathbf{a}$ .
- $\tau = \mathbf{r} \times \mathbf{F}$ .
- Second derivative test for a critical point (a,b) of f(x,y):  $D(a,b) = f_{xx}(a,b)f_{yy}(a,b) [f_{xy}(a,b)]^2$ .

If D > 0 and  $f_{xx}(a,b) > 0$ , then f(a,b) is a local minimum;

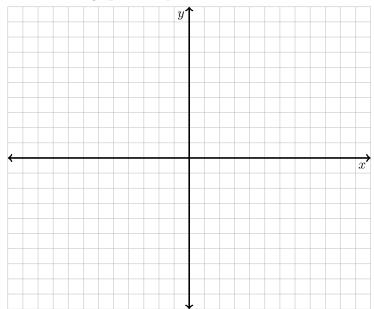
If D > 0 and  $f_{xx}(a, b) < 0$ , then f(a, b) is a local maximum;

If D < 0, then f(a, b) is not a local extreme;

If D = 0, then the test is inconclusive.

- $dV = dx dy dz = r dz dr d\theta = \rho^2 \sin \phi d\rho d\theta d\phi$ .
- Spherical-Cartesian conversions:  $x = \rho \sin \phi \cos \theta$ ,  $y = \rho \sin \phi \sin \theta$ ,  $z = \rho \cos \phi$ , and  $x^2 + y^2 + z^2 = \rho^2$ .
- The Jacobian of the transformation x = g(u, v), y = h(u, v) is  $\frac{\partial(x, y)}{\partial(u, v)} = \left(\frac{\partial x}{\partial u}\right) \left(\frac{\partial y}{\partial v}\right) \left(\frac{\partial x}{\partial v}\right) \left(\frac{\partial y}{\partial u}\right).$

1. Sketch the graph of the polar curve  $r = 1 + 2\cos\theta$ . Label all axis intercepts clearly.



2. Vectors  $\mathbf{a}$  and  $\mathbf{b}$  are shown. Draw the vectors  $\mathbf{a} + \mathbf{b}$  and  $\mathbf{a} - \mathbf{b}$  and determine which has greater magnitude. Label your vectors clearly.



| 3. | Determine the slope of | the tangent line t | so the curve $r=1$ | $-\cos\theta$ at the point | $t(r,\theta) =$ | $(1, \frac{\pi}{2}).$ |
|----|------------------------|--------------------|--------------------|----------------------------|-----------------|-----------------------|

**4.** Determine the area of the region inside the polar curve 
$$r = \theta$$
 for  $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$ .

| 5 | Determine the angle | of intersection | of the li | nes $L_1 \cdot \ell$ | $\langle r   u   r \rangle =$ | $(2t \ 2 \ 2t -$ | 1) and $L_0$ . | $\langle r   u \rangle = \langle$ | 9 + 11 - 11 - 11 - 11 - 11 - 11 - 11 - 1 | s - 2 - s |
|---|---------------------|-----------------|-----------|----------------------|-------------------------------|------------------|----------------|-----------------------------------|------------------------------------------|-----------|

**6.** Find an equation for the plane containing the lines  $L_1: x=6t-3, y=1-3t, z=2t$  and  $L_2: x=2s-1, y=-s, z=4-s$ .

| 7. | Find a set of parametric equations | describing the curve | e of intersection of | of the cylinders z | $= x^2$ and $x^2 + y^2 = 1$ . |
|----|------------------------------------|----------------------|----------------------|--------------------|-------------------------------|

8. Calculate the curvature of the space curve  $\mathbf{r}(t) = \langle t^2, t^3 - t, t \rangle$  at the point (1, 0, 1).

**9.** Explain why the limit does not exist:  $\lim_{(x,y)\to(0,0)} \frac{xy}{(x+y)^2}$ .

10. Calculate  $\frac{\partial z}{\partial y}$  if  $x^2 - y^2 + z^2 - 2z = 4$ .

11. Calculate  $\frac{\partial w}{\partial t}$  if  $w = xe^{yz}$  and  $x = r\cos t$ ,  $y = r\sin t$ , and  $z = r^2 + t^2$ .

**12.** Calculate the directional derivative  $D_{\mathbf{u}}f(2,1)$  if  $\mathbf{u} = \left\langle \frac{3}{\sqrt{34}}, \frac{5}{\sqrt{34}} \right\rangle$  and  $f(x,y) = \frac{1}{x^2 - y^2}$ .

| 13. | Evaluate the definite integral | $\iint_{\mathcal{D}} x \ dA$ where | R is the region | bounded by the | <i>u</i> -axis and the line | es $x = y + 2$ , and $x = 2y$ . |
|-----|--------------------------------|------------------------------------|-----------------|----------------|-----------------------------|---------------------------------|

**14.** Evaluate the iterated integral  $\int_0^1 \int_x^1 \cos(y^2) \ dy dx$ .



| 17. Find all the critical points of $f(x,y) = xy + \frac{1}{x} + \frac{1}{y}$ and determine if each is a local minimum, local maximum, or neither. |
|----------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                    |

**18.** Determine the maximum and minimum values of f(x,y) = 3x + y given that  $x^2 + y^2 = 10$ .