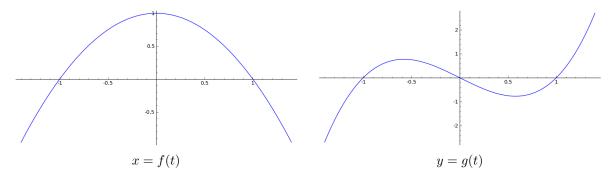
Instructions: Answer all 10 problems. Show all your work: even correct answers may receive little or no credit if a method of solution is not shown. Calculators, notes, cell phones, and other materials are not permitted.

Name.

You may find the following helpful:

- Half-angle formulas: $\sin^2 x = \frac{1}{2}(1-\cos 2x)$ and $\cos^2 x = \frac{1}{2}(1+\cos 2x)$;
- Derivative of a polar curve: $\frac{dy}{dx} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta r\sin\theta};$
- Arc length of a polar curve: $L = \int_a^b \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} \ d\theta;$
- Conic sections with foci at the origin and directrices parallel to an axis: $r = \frac{ed}{1 \pm e \cos \theta}$ or $r = \frac{ed}{1 \pm e \sin \theta}$;
- Some values of $\tan \theta$: $\tan 0 = 0$, $\tan(\frac{\pi}{6}) = \frac{1}{\sqrt{3}}$, $\tan(\frac{\pi}{4}) = 1$, $\tan(\frac{\pi}{3}) = \sqrt{3}$, and $\tan(\frac{\pi}{2})$ is undefined.
- 1. Use the following graphs of x = f(t) and y = g(t) to sketch the parametric curve x = f(t), y = g(t). Indicate the direction in which the curve is traced as t increases and give coordinates for axis intercepts.



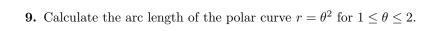
2.	Eliminate the parameter to find a Cartesian equation for the curve with parametric equations $x = e^t - 1$, $y = e^{2t}$.
3.	Find an equation for the line tangent to the parametric curve $x(t) = t^3 - 1$, $y(t) = 1 + \ln t$ at the point $(x, y) = (0, 1)$.
3.	Find an equation for the line tangent to the parametric curve $x(t) = t^3 - 1$, $y(t) = 1 + \ln t$ at the point $(x, y) = (0, 1)$.
3.	Find an equation for the line tangent to the parametric curve $x(t) = t^3 - 1$, $y(t) = 1 + \ln t$ at the point $(x, y) = (0, 1)$.
3.	Find an equation for the line tangent to the parametric curve $x(t) = t^3 - 1$, $y(t) = 1 + \ln t$ at the point $(x, y) = (0, 1)$.
3.	Find an equation for the line tangent to the parametric curve $x(t)=t^3-1,y(t)=1+\ln t$ at the point $(x,y)=(0,1).$
3.	Find an equation for the line tangent to the parametric curve $x(t)=t^3-1,y(t)=1+\ln t$ at the point $(x,y)=(0,1).$
3.	Find an equation for the line tangent to the parametric curve $x(t)=t^3-1,y(t)=1+\ln t$ at the point $(x,y)=(0,1).$

4. Find $\frac{d^2y}{dx^2}$ for $x(t) = 1 + t^2$, $y(t) = t + t^2$.

5. Find the area enclosed between the parametric curve $x=t-t^2,\,y=2\sqrt{t}$ and the y-axis.

6. Sketch the polar curve $r = 1 + \cos(2\theta)$. Mark the axis intercepts clearly.

7	• Find the slope of the li	no tongent to the no		(2θ) when $\theta = \pi$	
٠.	. Find the slope of the h	ne tangent to the po	that curve $T = 2 + 3 \sin(\frac{1}{2})$	(20) when $\theta = \pi$.	
8.	. Determine the area of	the region that lies is	nside the curve $r = 1$ a	and outside the curve $r = \cos(2\theta)$	9).
8.	. Determine the area of	the region that lies is	nside the curve $r = 1$ a	and outside the curve $r = \cos(2\theta)$	9).
8.	. Determine the area of	the region that lies in	nside the curve $r=1$ a	and outside the curve $r = \cos(2\theta)$	9).
8.	. Determine the area of	the region that lies in	nside the curve $r=1$ a	and outside the curve $r = \cos(2\theta)$	9).
8.	. Determine the area of	the region that lies in	nside the curve $r=1$ a	and outside the curve $r = \cos(2\theta)$	θ).
8.	. Determine the area of	the region that lies in	nside the curve $r=1$ a	and outside the curve $r = \cos(2\theta)$	9).
8.	. Determine the area of	the region that lies in	nside the curve $r=1$ a	and outside the curve $r = \cos(2\theta)$	9).
8.	. Determine the area of	the region that lies in	nside the curve $r=1$ a	and outside the curve $r = \cos(2\theta)$	9).
8.	. Determine the area of	the region that lies in	nside the curve $r=1$ a	and outside the curve $r = \cos(2\theta)$	9).
8.	. Determine the area of	the region that lies in	nside the curve $r=1$ a	and outside the curve $r = \cos(2\theta)$	9).
8.	. Determine the area of	the region that lies in	nside the curve $r=1$ a	and outside the curve $r = \cos(2\theta)$	9).



10. Determine if the conic section defined by $r = \frac{-5}{\cos \theta - 2}$ is an ellipse, a parabola, or a hyperbola and find a Cartesian equation for its directrix.