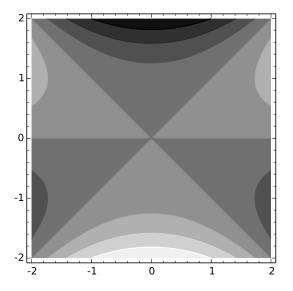
1. Suppose
$$\frac{d}{du}[f(u)] = e^{u^2}$$
.
a) Find $\frac{\partial}{\partial x} \left[f\left(\frac{x}{y}\right) \right]$

b) Find
$$\frac{\partial}{\partial y} \left[f\left(\frac{x}{y}\right) \right]$$

2. We can keep differentiating to find second partial derivatives, third partial derivatives, and so on. Pay careful attention to the order of differentiation. The second partial derivatives are:


Calculate the second partial derivatives of $f\left(\frac{x}{y}\right)$ from problem 1.

3. Clairaut's Theorem tells us that the mixed second partial derivatives are always equal (provided they are both continuous). Verify that $\frac{\partial^2}{\partial y \partial x} \left[f\left(\frac{x}{y}\right) \right] = \frac{\partial^2}{\partial x \partial y} \left[f\left(\frac{x}{y}\right) \right]$.

4. In the contour plot of z = g(x, y) shown below lighter areas are higher and darker areas are lower. Use the contour plot determine the sign of each of the partial derivatives.

a) $g_x(0.5,1)$

- b) $g_y(0.5, 1)$
- c) $g_y(-2, 0.5)$
- d) $g_x(0,0)$

