VECTORS

- **1.** Describe (or draw) the set of points x in \mathbb{R} that satisfy the equation $(x-2)^2=9$.
- **2.** Describe (or draw) the set of points (x,y) in \mathbb{R}^2 that satisfy the equation $(x-2)^2 + (y-1)^2 = 9$.

3. Describe (or draw) the set of points (x, y, z) in \mathbb{R}^3 that satisfy the equation $(x-2)^2 + (y-1)^2 + z^2 = 9$.

4. Describe (or draw) the set of points (x, y, z) in \mathbb{R}^3 that satisfy the equation $(x-2)^2 + (y-1)^2 + z^2 \leq 9$.

Date: January 16, 2019.

- 5. Adding an extra component to a 2-component vector gives us a vector in 3 dimensions.
 - a) Find the vector from P(1,2,3) to Q(-3,5,-3).
 - b) Calculate the magnitude of the vector $\vec{P}\vec{Q}$.
 - c) Find a unit vector parallel to $\vec{P}\vec{Q}$.
 - d) How many different unit vectors are parallel to $\vec{P}\vec{Q}$?
- **6.** Let $\mathbf{u} = \langle 1, 2, 3 \rangle$ and $\mathbf{v} = \langle -1, -2, 3 \rangle$. Calculate the following. a) $\mathbf{u} + \mathbf{v}$.
 - b) $\mathbf{u} \mathbf{v}$.
 - c) $2\mathbf{u} + \mathbf{v}$.
- 7. A drone is flying horizontally due north at a speed of 5 mi/hr when it encounters a horizontal crosswind blowing northwest at 8 mi/hr and an updraft blowing up at 1 mi/hr.
 - a) Find the velocity vector of the drone.
 - b) Find the speed of the drone.