VECTOR PRODUCTS

Definition. The **dot product** of vectors **u** and **v** is $|\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta$ where θ is the angle between **u** and **v**.

Often this definition is used in conjunction with the following formula for the dot product. Note that I've stated only the 3-d version; I think you'll be able to figure out the 2-d version.

Theorem. If $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$, then $\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3$

- **1.** Let $\mathbf{u} = \langle 1, 2 \rangle$ and let $\mathbf{v} = \langle 4, 2 \rangle$.
 - a) Calculate $\mathbf{u} \cdot \mathbf{v}$
 - b) Calculate $|\mathbf{u}|$ and $|\mathbf{v}|$
 - c) Calculate $\cos \theta$

2. Shown above is a diagram of the vectors from problem 1 (you may want to fill in the missing labels). The vector \mathbf{w} is the orthogonal projection of \mathbf{u} onto \mathbf{v} .

a) Calculate $|\mathbf{w}|$

- b) Find a unit vector with the same direction as ${\bf w}$
- c) Find the vector components of ${\bf w}$

Date: January 22, 2019.

VECTOR PRODUCTS

3. You probably already know that work is force times distance. However, this only applies when the force and the displacement are in the same direction. The more general version is $\mathbf{W} = \mathbf{F} \cdot \mathbf{d}$ where work, force, and displacement are all vectors. Use this to calculate the work done by a ski lift that moves 200 kg of skiers along the vector $\langle 80, 350, 300 \rangle$ (measured in meters) while subject to the force of gravity and wind exerting a force of $\langle 15, -120, -60 \rangle$ Newtons.

Definition. If $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$, then the **cross product** of \mathbf{u} and \mathbf{v} is

 $\mathbf{u} \times \mathbf{v} = \langle u_2 v_3 - u_3 v_2, \ u_3 v_1 - u_1 v_3, \ u_1 v_2 - u_2 v_1 \rangle$

(Note that the cross product is only defined for 3-dimensional vectors.)

4. The coordinate vectors of R³ are i = (1,0,0), j = (0,1,0), and k = (0,0,1).
a) Find i × j

b) Find $\mathbf{j} \times \mathbf{i}$

c) Find $\mathbf{j} \times \mathbf{k}$

d) Find two unit vectors whose cross product is **j**