INTEGRALS APPLIED

Definition. The z coordinate of the center of mass of a solid with density f(x, y, z) occupying region D is

$$\overline{z} = \frac{1}{m} \iiint_D z f(x, y, z) \ dV$$

where $m = \iiint_D f(x, y, z) \, dV$ is the mass of the solid.

1. Find the center of mass of the constant-density solid cone bounded by $z = 4 - \sqrt{x^2 + y^2}$ and z = 0.

2. The hemisphere *D* occupies the region inside $x^2 + y^2 + z^2 = 1$ with $z \ge 0$. Find the center of mass of *D* if its density is $f(x, y, z) = 2 - \sqrt{x^2 + y^2 + z^2}$.

3. Find the volume of the solid formed by the intersection of the cylinders $x^2 + z^2 = 1$ and $y^2 + z^2 = 1$.

4. Find the volume of the solid formed by the intersection of the cylinders $x^2 + y^2 = 1$, $x^2 + z^2 = 1$, and $y^2 + z^2 = 1$.