Instructions: Solve N-1 of the N problems; choose one problem to skip and put a big \mathbf{X} in the corresponding box below. If you do not indicate which problem you are choosing to skip, I will assume that I should skip problem 8, which may hurt your grade. Show your work: even correct answers may receive little or no credit if a method of solution is not shown. You do not need to simplify your solutions. Graphing calculators, notes, cell phones, and other materials are not permitted.

Name:											
1	2	3	4	5	6		N	Total			

Applications	Transla	Differentials	
$A = \iint_R dA$	$ Rectangular \rightarrow Cylindrical $	$\text{Rectangular} \rightarrow \text{Spherical}$	$dV = \dots$
$V = \iint_R f(x, y) \ dA$	$x = r\cos\theta$	$x = \rho \sin \varphi \cos \theta$	$\int dx dy dz$
$m = \iint_R f(x, y) \ dA$	$y = r\sin\theta$	$y = \rho \sin \varphi \sin \theta$	$r dz dr d\theta$
$V = \iiint_S dV$	z = z	$z = \rho \cos \varphi$	$\rho^2 \sin \varphi \ d\rho \ d\varphi \ d\theta$
$m = \iiint_S f(x, y, z) \ dV$	$x^2 + y^2 = r^2$	$x^2 + y^2 + z^2 = \rho^2$	