VECTOR PRODUCTS

Definition. Let **u** and **v** be vectors and let θ be the angle between **u** and **v** (with $0 \le \theta \le \pi$).

(1) The dot product of **u** and **v** is **u** · **v** = |**u**| |**v**| cos θ
(2) The orthogonal projection of **u** onto **v** is **proj**_{**v**}**u** = (**u** · **v**)/|**v**|²) **v**(3) The scalar projection of **u** onto **v** is scal_{**v**}**u** = **u** · **v**/|**v**|
Theorem. If **u** = ⟨u₁, u₂, u₃⟩ and **v** = ⟨v₁, v₂, v₃⟩, then **u** · **v** = u₁v₁ + u₂v₂ + u₃v₃
1. Let **u** = ⟨1, 2, 3⟩ and **v** = ⟨0, -2, 1⟩.
a) Find scal_{**v**}**u**.

- b) Determine if $scal_{\mathbf{u}}\mathbf{v}$ is positive or negative without doing any additional calculations.
- c) Find the angle between \mathbf{u} and \mathbf{v} .

2. You probably already know that work is force times distance. However, this only applies when the force and the displacement are in the same direction. The more general version is $W = \mathbf{F} \cdot \mathbf{d}$ force and displacement are vectors. Use this to calculate the work done by a ski lift that moves 200 kg of skiers along the vector $\langle 80, 350, 300 \rangle$ (measured in meters) while subject to the force of gravity and wind exerting a force of $\langle 15, -120, -60 \rangle$ Newtons.

Date: September 5, 2019.

Definition. If $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$, then the **cross product** of \mathbf{u} and \mathbf{v} is

 $\mathbf{u} \times \mathbf{v} = \langle u_2 v_3 - u_3 v_2, \ u_3 v_1 - u_1 v_3, \ u_1 v_2 - u_2 v_1 \rangle$

(Note that the cross product is only defined for 3-dimensional vectors.)

3. The coordinate vectors of \mathbb{R}^3 are $\mathbf{i} = \langle 1, 0, 0 \rangle$, $\mathbf{j} = \langle 0, 1, 0 \rangle$, and $\mathbf{k} = \langle 0, 0, 1 \rangle$. a) Find $\mathbf{i} \times \mathbf{j}$

b) Find $\mathbf{j} \times \mathbf{i}$

c) Find $\mathbf{j}\times\mathbf{k}$

d) Find two vectors whose cross product is **j**