INTEGRALS APPLIED

Definition. The center of mass of a solid with density f(x, y, z) occupying region D is $(\overline{x}, \overline{y}, \overline{z})$ where

$$\overline{x} = \frac{1}{m} \iiint_D x f(x, y, z) \, dV$$

$$\overline{y} = \frac{1}{m} \iiint_D y f(x, y, z) \, dV$$

$$\overline{z} = \frac{1}{m} \iiint_D z f(x, y, z) \, dV$$

and $m = \iiint_D f(x, y, z) \, dV$ is the mass of the solid.

1. Find the center of mass of a constant-density solid half-cone cone:

$$D = \{(x, y, z) : 0 \le z \le 4 - \sqrt{x^2 + y^2} \text{ and } y \ge 0\}$$

Date: November 4, 2019.

2. The hemisphere *D* occupies the region inside $x^2 + y^2 + z^2 = 1$ with $z \ge 0$. Find the center of mass of *D* if its density is $f(x, y, z) = 2 - \sqrt{x^2 + y^2 + z^2}$. Hint: take advantage of the symmetry of the solid and its density.

Challenge. Find the volume of the solid formed by the intersection of the cylinders $x^2 + z^2 = 1$ and $y^2 + z^2 = 1$. Hint: What does the solid look like from above? Take advantage of symmetry.

Challenge. Find the volume of the solid formed by the intersection of the cylinders $x^2 + y^2 = 1$, $x^2 + z^2 = 1$, and $y^2 + z^2 = 1$.