SURFACE INTEGRALS AND STOKES' THEOREM

Definition. The surface integral of the scalar-valued function f(x, y, z) over the parametric surface $S : \mathbf{r}(u, v) = \langle x(u, v), y(u, v), z(u, v) \rangle$ with (u, v) in the region R is

$$\iint_{S} f dS = \iint_{R} f(u, v) |\mathbf{t}_{u} \times \mathbf{t}_{v}| dA$$

where $\mathbf{t}_u = \frac{\partial \mathbf{r}}{\partial u}$ and $\mathbf{t}_v = \frac{\partial \mathbf{r}}{\partial v}$.

Definition. The flux of the vector field $\mathbf{F}(x, y, z)$ across the parametric surface $S : \mathbf{r}(u, v) = \langle x(u, v), y(u, v), z(u, v) \rangle$ with (u, v) in the region R is

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} \, dS = \iint_{R} \mathbf{F} \cdot (\mathbf{t}_{u} \times \mathbf{t}_{v}) \, dA$$

Theorem. The surface integral of the scalar-valued function f(x, y, z) over the surface z = z(x, y) for (x, y) in the region R is

$$\iint_{S} f \, dS = \iint_{R} f(x, y, z(x, y)) \sqrt{z_{x}^{2} + z_{y}^{2} + 1} \, dA$$

Theorem. The **flux** of the vector field $\mathbf{F}(x, y, z) = \langle f(x, y, z), g(x, y, z), h(x, y, z) \rangle$ across the surface z = z(x, y) for (x, y) in the region R is

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} \, dS = \iint_{R} (-fz_{x} - gz_{y} + h) \, dA$$

1. Let $\mathbf{F}(x, y, z) = \langle x, y, z \rangle$ and let S_1 be the upper hemisphere $z = \sqrt{1 - x^2 - y^2}$ and S_2 be the part of the paraboloid $z = 1 - x^2 - y^2$ with $z \ge 0$.

- a) Plot the vector field and the surfaces in CalcPlot3D and make a guess about whether the flux of F across S_1 or across S_2 is greater.
- b) Calculate the flux of **F** across S_1 and the flux of **F** across S_2 .

Date: November 25, 2019.

Theorem (Stokes' theorem). Let S be an oriented surface with boundary C (the orientation of which must be consistent with the orientation of S.

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_S (\operatorname{curl} \mathbf{F}) \cdot \mathbf{n} \ dS$$

2. Use Stokes' theorem to evaluate $\oint_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F} = \langle -y^2, x, z^2 \rangle$ and *C* is the curve of intersection of the plane z + y = 2 with the cylinder $x^2 + y^2 = 1$ (with a counterclockwise orientation when seen from above).