Instructions: The exam consists of K total questions, N in section 1 and K-N in section 2. Solve N-1 of the N section 1 problems and **all** of the section 1 problems. Write your solutions to the section 1 problems on the provided paper, clearly labeling each solution. Write your solutions to the section 2 problems on the problem page. Calculators, phones, and all other devices are forbidden. Answers may be left unsimplified.

Thoerem. The general solution to the homogeneous linear differential equation y' + p(x)y = 0 is

$$y = ce^{-P(x)}$$

where P'(x) = p(x).

Thoerem. The general solution to the linear differential equation y' + p(x)y = f(x) is $y = uy_1$ where

a) y_1 is any particular solution to the complementary equation y' + p(x)y = 0 and

b)
$$u = \int \frac{f(x)}{y_1(x)} dx$$
 (add a constant here).

Conversion to the Ponicaré phase plane: y' = v and $y'' = v \frac{dv}{dy}$.

Thoerem. If the characteristic polynomial of ay'' + by' + cy' = 0 has...

- a) ...distinct real roots r_1 and r_2 , then a general solution is $y = c_1 e^{r_1 x} + c_2 e^{r_2 x}$
- b) ...a single (repeated) real root r, then a general solution is $y = e^{rx}(c_1 + c_2x)$
- c) ...complex conjugate roots $\lambda \pm i\omega$ (where $\omega > 0$), then a general solution is $y = e^{\lambda x}(c_1 \cos \omega x + c_2 \sin \omega x)$

Thoerem. If y_p is any particular solution to the differential equation y'' + p(x)y' + q(x)y = f(x) and $\{y_1, y_2\}$ is a fundamental set of solutions to the complementary equation, then a general solution for differential equation is

$$y = y_p + c_1 y_1 + c_2 y_2$$

Thoerem (Superposition). If y_{p_1} is a particular solution of $y'' + p(x)y' + q(x)y = f_1(x)$ and y_{p_2} is a particular solution of $y'' + p(x)y' + q(x)y = f_2(x)$, then a particular solution of

$$y'' + p(x)y' + q(x)y = f_1(x) + f_2(x)$$

is

$$y_p = y_{p_1} + y_{p_2}$$

Method. To find a particular solution for $ay'' + by' + cy = e^{\alpha x}G(x)$ (where G is a polynomial), solve for the coefficients of Q(x) in the following (where Q is a polynomial with the same degree as G):

- a) $y_p = e^{\alpha x} Q(x)$ if $e^{\alpha x}$ is not a solution to the complementary equation;
- b) $y_p = xe^{\alpha x}Q(x)$ if $xe^{\alpha x}$ is not a solution to the complementary equation, but $e^{\alpha x}$ is a solution to the complementary equation;
- c) $y_p = x^2 e^{\alpha x} Q(x)$ if $x e^{\alpha x}$ and $e^{\alpha x}$ are both solutions to the complementary equation.

Method. To find a particular solution for $ay'' + by' + cy = P(x)\cos\omega x + Q(x)\sin\omega x$ (where P and Q are polynomials), solve for the coefficients of A(x) and B(x) in the following (where A and B are polynomials with degree equal to the larger of the degrees of P and Q):

a) $y_p = A(x)\cos\omega x + B(x)\sin\omega x$ if $\cos\omega x$ and $\sin\omega x$ are not solutions to the complementary equation;

b) $y_p = x \left[A(x) \cos \omega x + B(x) \sin \omega x \right]$ if $\cos \omega x$ and $\sin \omega x$ are solutions to the complementary equation;

Definition. The Laplace transform of
$$f$$
 is $L(f) = F(s) = \int_0^\infty f(t)e^{-st}dt$

Thoerem (First Shifting Theorem). If L(f) = F(s), then $L\left(e^{at}f(t)\right) = F(s-a)$

Thoerem.
$$\boxed{L(f') = sL(f) - f(0)}$$
 and $\boxed{L(f'') = s^2L(f) - sf(0) - f'(0)}$

Thoerem.
$$f(t) = \begin{cases} f_0(t), & 0 \le t < t_0 \\ f_1(t), & t \ge t_0 \end{cases} = f_0(t) + u(t - t_0) \left[f_1(t) - f_0(t) \right]$$

Thoerem (Second Shifting Theorem).

1.
$$L(u(t-t_0)g(t)) = e^{-t_0s}L(g(t+t_0))$$

2.
$$L(u(t-t_0)g(t-t_0)) = e^{-t_0s}L(g)$$

Definition. The convolution of functions f and g is the function f*g defined by $(f*g)(t) = \int_0^t f(\tau)g(t-\tau)d\tau$

Theorem (Convolution Theorem). If L(f) = F and L(g) = G, then L(f * g) = FG

Definition. The solution to the initial value problem $ay'' + by' + cy = \delta(t - t_0), \ y(0) = 0, \ y'(0) = 0$ is $\boxed{y = u(t - t_0)w(t - t_0)} \text{ where } w(t) = L^{-1}\left(\frac{1}{as^2 + bs + c}\right).$

Thoerem (Superposition). If y_1 is the solution of the IVP

$$ay'' + by' + cy = f_1(t), \ y(0) = k_1, \ y'(0) = k_2$$

and y_2 is the solution of the IVP

$$ay'' + by' + cy = f_2(t), \ y(0) = l_1, \ y'(0) = l_2,$$

then $y_1 + y_2$ is the solution to the IVP

$$ay'' + by' + cy = f_1(t) + f_2(t), \ y(0) = k_1 + l_1, \ y'(0) = k_2 + l_2.$$

Laplace transforms

f(t)	1	t^n	e^{at}	$t^n e^{at}$	$\sin \omega t$	$\cos \omega t$	$\sinh bt$	$\cosh bt$	$\delta(t-t_0)$
F(S)	$\frac{1}{s}$	$\frac{n!}{s^{n+1}}$	$\frac{1}{s-a}$	$\frac{n!}{(s-a)^{n+1}}$	$\frac{\omega}{s^2 + \omega^2}$	$\frac{s}{s^2 + \omega^2}$	$\frac{b}{s^2 - b^2}$	$\frac{s}{s^2 - b^2}$	e^{-t_0s}

Thoerem. Let A be an $n \times n$ matrix with real entries.

i) If A has real eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$ with associated linearly independent eigenvectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$, then the functions

$$\mathbf{y}_1 = \mathbf{x}_1 e^{\lambda_1 t}$$

$$\mathbf{y}_2 = \mathbf{x}_2 e^{\lambda_2 t}$$

$$\vdots$$

$$\mathbf{y}_n = \mathbf{x}_n e^{\lambda_n t}$$

form a fundamental set of solutions of Ay = y'.

ii) If A has an eigenvalue λ with multiplicity of 2 or more and with an associated eigenspace of dimension 1, then there are infinitely many vectors \mathbf{u} such that $(A - \lambda I)\mathbf{u} = \mathbf{x}$. If \mathbf{u} is any such vector, then

$$\mathbf{y}_1 = \mathbf{x}e^{\lambda t}$$
$$\mathbf{y}_2 = \mathbf{x}te^{\lambda t} + \mathbf{u}e^{\lambda t}$$

are linearly independent solutions of Ay = y'.

a) If λ has multiplicity 3 or more and has an associated eigenspace of dimension 1, then in addition to the preceding there are infinitely many vectors \mathbf{v} such that $(A - \lambda I)\mathbf{v} = \mathbf{u}$. If \mathbf{v} is any such vector, then an additional linearly independent solution is

$$\mathbf{y}_3 = \mathbf{v}e^{\lambda t} + \mathbf{u}te^{\lambda t} + \mathbf{x}\left(\frac{t^2}{2}\right)e^{\lambda t}$$

- b) If λ has multiplicity 3 or more and has an associated eigenspace of dimension 2, then see page 550 of the textbook for a solution.
- iii) If A has a complex eigenvalue $\lambda = \alpha + i\beta$ (with $\beta \neq 0$) with associated eigenvector $\mathbf{x} = \mathbf{u} + i\mathbf{v}$, then both \mathbf{u} and \mathbf{v} are nonzero and

$$\mathbf{y}_1 = e^{\alpha t} (\mathbf{u} \cos \beta t - \mathbf{v} \sin \beta t)$$

$$\mathbf{y}_2 = e^{\alpha t} (\mathbf{u} \sin \beta t + \mathbf{v} \cos \beta t)$$

are linearly independent solutions of $A\mathbf{y} = \mathbf{y}'$.

Method. To solve the IVP $A\mathbf{y} = \mathbf{y}'$, $\mathbf{y}(0) = \mathbf{b}$:

- 1. Find the eigenvalues of A.
- 2. Find an eigenvector for each eigenvalue.
- 3. Use the theorem above to find a fundamental set of solutions y_1, y_2, \dots, y_n .
- 4. Your general solution is $\mathbf{y}(t) = c_1 \mathbf{y}_1(t) + c_2 \mathbf{y}_2(t) + \cdots + c_n \mathbf{y}_n(t)$.

5. Use the initial condition to solve the system of equations for c_1, c_2, \ldots, c_n : $\mathbf{b} = \mathbf{y}(0) = c_1 \mathbf{y}_1(0) + c_2 \mathbf{y}_2(0) + \cdots + c_n \mathbf{y}_n(0).$

Method. The eigenvalues of an $n \times n$ matrix A are the solutions to $\det(A - \lambda I) = 0$. Find the eigenvector(s) corresponding to eigenvalue λ by solving $(A - \lambda I)\mathbf{x} = 0$. In 2-dimensional systems, the solution to $(A - \lambda I)\mathbf{x} = 0$ is usually a line $ax_1 + bx_2 = 0$; to find an eigenvalue, just choose a value for x_1 or x_2 and solve for the other.

Section 1 problems

Instructions: Solve N-1 of the section 1 problems and place an ${\bf X}$ in the box below to indicate which you are skipping. Write your solutions to the section 1 problems on the provided paper, clearly labeling each solution. Solutions to section 1 problems should include a clear method or argument and should use English words and sentences when appropriate. Clear and comprehensible solutions will generally earn more points than those that are hard to understand; a correct solution without supporting work may receive little or no credit.

1	2	3	4	5	6	 N	Section 1 Total

Section 2 problems

Instructions: Solve all K-N of the section 2 problems. Write your solutions on these pages.