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2.1 LINEAR FIRST ORDER EQUATIONS

A first order differential equation is said to be linear if it can be written as

y0 C p.x/y D f .x/: (2.1.1)

A first order differential equation that can’t be written like this is nonlinear. We say that (2.1.1) is

homogeneous if f � 0; otherwise it’s nonhomogeneous. Since y � 0 is obviously a solution of the

homgeneous equation

y0 C p.x/y D 0;

we call it the trivial solution. Any other solution is nontrivial.

Example 2.1.1 The first order equations

x2y0 C 3y D x2;

xy0 � 8x2y D sin x;

xy0 C .ln x/y D 0;

y0 D x2y � 2;

are not in the form (2.1.1), but they are linear, since they can be rewritten as

y0 C 3

x2
y D 1;

y0 � 8xy D sin x

x
;

y0 C ln x

x
y D 0;

y0 � x2y D �2:

Example 2.1.2 Here are some nonlinear first order equations:

xy0 C 3y2 D 2x (because y is squared);

yy0 D 3 (because of the product yy0);

y0 C xey D 12 (because of ey):

General Solution of a Linear First Order Equation

To motivate a definition that we’ll need, consider the simple linear first order equation

y0 D 1

x2
: (2.1.2)

From calculus we know that y satisfies this equation if and only if

y D � 1

x
C c; (2.1.3)

where c is an arbitrary constant. We call c a parameter and say that (2.1.3) defines a one–parameter

family of functions. For each real number c, the function defined by (2.1.3) is a solution of (2.1.2) on
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.�1; 0/ and .0; 1/; moreover, every solution of (2.1.2) on either of these intervals is of the form (2.1.3)

for some choice of c. We say that (2.1.3) is the general solution of (2.1.2).

We’ll see that a similar situation occurs in connection with any first order linear equation

y0 C p.x/y D f .x/I (2.1.4)

that is, if p and f are continuous on some open interval .a; b/ then there’s a unique formula y D y.x; c/

analogous to (2.1.3) that involves x and a parameter c and has the these properties:

� For each fixed value of c, the resulting function of x is a solution of (2.1.4) on .a; b/.

� If y is a solution of (2.1.4) on .a; b/, then y can be obtained from the formula by choosing c

appropriately.

We’ll call y D y.x; c/ the general solution of (2.1.4).

When this has been established, it will follow that an equation of the form

P0.x/y0 C P1.x/y D F.x/ (2.1.5)

has a general solution on any open interval .a; b/ on which P0, P1, and F are all continuous and P0 has

no zeros, since in this case we can rewrite (2.1.5) in the form (2.1.4) with p D P1=P0 and f D F=P0,

which are both continuous on .a; b/.

To avoid awkward wording in examples and exercises, we won’t specify the interval .a; b/ when we

ask for the general solution of a specific linear first order equation. Let’s agree that this always means
that we want the general solution on every open interval on which p and f are continuous if the equation

is of the form (2.1.4), or on which P0, P1, and F are continuous and P0 has no zeros, if the equation is

of the form (2.1.5). We leave it to you to identify these intervals in specific examples and exercises.

For completeness, we point out that if P0, P1, and F are all continuous on an open interval .a; b/, but

P0 does have a zero in .a; b/, then (2.1.5) may fail to have a general solution on .a; b/ in the sense just

defined. Since this isn’t a major point that needs to be developed in depth, we won’t discuss it further;
however, see Exercise 44 for an example.

Homogeneous Linear First Order Equations

We begin with the problem of finding the general solution of a homogeneous linear first order equation.
The next example recalls a familiar result from calculus.

Example 2.1.3 Let a be a constant.

(a) Find the general solution of

y0 � ay D 0: (2.1.6)

(b) Solve the initial value problem

y0 � ay D 0; y.x0/ D y0:

SOLUTION(a) You already know from calculus that if c is any constant, then y D ceax satisfies (2.1.6).

However, let’s pretend you’ve forgotten this, and use this problem to illustrate a general method for

solving a homogeneous linear first order equation.
We know that (2.1.6) has the trivial solution y � 0. Now suppose y is a nontrivial solution of (2.1.6).

Then, since a differentiable function must be continuous, there must be some open interval I on which y

has no zeros. We rewrite (2.1.6) as
y0

y
D a
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Figure 2.1.1 Solutions of y0 � ay D 0, y.0/ D 1

for x in I . Integrating this shows that

ln jyj D ax C k; so jyj D ekeax;

where k is an arbitrary constant. Since eax can never equal zero, y has no zeros, so y is either always

positive or always negative. Therefore we can rewrite y as

y D ceax (2.1.7)

where

c D
�

ek if y > 0;

�ek if y < 0:

This shows that every nontrivial solution of (2.1.6) is of the form y D ceax for some nonzero constant c.

Since setting c D 0 yields the trivial solution, all solutions of (2.1.6) are of the form (2.1.7). Conversely,

(2.1.7) is a solution of (2.1.6) for every choice of c, since differentiating (2.1.7) yields y0 D aceax D ay.

SOLUTION(b) Imposing the initial condition y.x0/ D y0 yields y0 D ceax0, so c D y0e�ax0 and

y D y0e�ax0eax D y0ea.x�x0/:

Figure 2.1.1 show the graphs of this function with x0 D 0, y0 D 1, and various values of a.

Example 2.1.4 (a) Find the general solution of

xy0 C y D 0: (2.1.8)

(b) Solve the initial value problem

xy0 C y D 0; y.1/ D 3: (2.1.9)
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SOLUTION(a) We rewrite (2.1.8) as

y0 C 1

x
y D 0; (2.1.10)

where x is restricted to either .�1; 0/ or .0; 1/. If y is a nontrivial solution of (2.1.10), there must be

some open interval I on which y has no zeros. We can rewrite (2.1.10) as

y0

y
D � 1

x

for x in I . Integrating shows that

ln jyj D � ln jxj C k; so jyj D ek

jxj :

Since a function that satisfies the last equation can’t change sign on either .�1; 0/ or .0; 1/, we can

rewrite this result more simply as

y D c

x
(2.1.11)

where

c D
�

ek if y > 0;

�ek if y < 0:

We’ve now shown that every solution of (2.1.10) is given by (2.1.11) for some choice of c. (Even though

we assumed that y was nontrivial to derive (2.1.11), we can get the trivial solution by setting c D 0 in
(2.1.11).) Conversely, any function of the form (2.1.11) is a solution of (2.1.10), since differentiating

(2.1.11) yields

y0 D � c

x2
;

and substituting this and (2.1.11) into (2.1.10) yields

y0 C 1

x
y D � c

x2
C 1

x

c

x

D � c

x2
C c

x2
D 0:

Figure 2.1.2 shows the graphs of some solutions corresponding to various values of c

SOLUTION(b) Imposing the initial condition y.1/ D 3 in (2.1.11) yields c D 3. Therefore the solution

of (2.1.9) is

y D 3

x
:

The interval of validity of this solution is .0; 1/.

The results in Examples 2.1.3(a) and 2.1.4(b) are special cases of the next theorem.

Theorem 2.1.1 If p is continuous on .a; b/; then the general solution of the homogeneous equation

y0 C p.x/y D 0 (2.1.12)

on .a; b/ is

y D ce�P.x/;

where

P.x/ D
Z

p.x/ dx (2.1.13)
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Figure 2.1.2 Solutions of xy0 C y D 0 on .0; 1/ and .�1; 0/

is any antiderivative of p on .a; b/I that is;

P 0.x/ D p.x/; a < x < b: (2.1.14)

Proof If y D ce�P.x/, differentiating y and using (2.1.14) shows that

y0 D �P 0.x/ce�P.x/ D �p.x/ce�P.x/ D �p.x/y;

so y0 C p.x/y D 0; that is, y is a solution of (2.1.12), for any choice of c.

Now we’ll show that any solution of (2.1.12) can be written as y D ce�P.x/ for some constant c. The

trivial solution can be written this way, with c D 0. Now suppose y is a nontrivial solution. Then there’s

an open subinterval I of .a; b/ on which y has no zeros. We can rewrite (2.1.12) as

y0

y
D �p.x/ (2.1.15)

for x in I . Integrating (2.1.15) and recalling (2.1.13) yields

ln jyj D �P.x/ C k;

where k is a constant. This implies that

jyj D eke�P.x/:

Since P is defined for all x in .a; b/ and an exponential can never equal zero, we can take I D .a; b/, so

y has zeros on .a; b/ .a; b/, so we can rewrite the last equation as y D ce�P.x/, where

c D
�

ek if y > 0 on .a; b/;

�ek if y < 0 on .a; b/:
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REMARK: Rewriting a first order differential equation so that one side depends only on y and y0 and the

other depends only on x is called separation of variables. We did this in Examples 2.1.3 and 2.1.4, and

in rewriting (2.1.12) as (2.1.15).We’llapply this method to nonlinear equations in Section 2.2.

Linear Nonhomogeneous First Order Equations

We’ll now solve the nonhomogeneous equation

y0 C p.x/y D f .x/: (2.1.16)

When considering this equation we call

y0 C p.x/y D 0

the complementary equation.
We’ll find solutions of (2.1.16) in the form y D uy1, where y1 is a nontrivial solution of the com-

plementary equation and u is to be determined. This method of using a solution of the complementary

equation to obtain solutions of a nonhomogeneous equation is a special case of a method called variation

of parameters, which you’ll encounter several times in this book. (Obviously, u can’t be constant, since

if it were, the left side of (2.1.16) would be zero. Recognizing this, the early users of this method viewed
u as a “parameter” that varies; hence, the name “variation of parameters.”)

If

y D uy1; then y0 D u0y1 C uy0
1:

Substituting these expressions for y and y0 into (2.1.16) yields

u0y1 C u.y0
1 C p.x/y1/ D f .x/;

which reduces to
u0y1 D f .x/; (2.1.17)

since y1 is a solution of the complementary equation; that is,

y0
1 C p.x/y1 D 0:

In the proof of Theorem 2.2.1 we saw that y1 has no zeros on an interval where p is continuous. Therefore

we can divide (2.1.17) through by y1 to obtain

u0 D f .x/=y1.x/:

We can integrate this (introducing a constant of integration), and multiply the result by y1 to get the gen-

eral solution of (2.1.16). Before turning to the formal proof of this claim, let’s consider some examples.

Example 2.1.5 Find the general solution of

y0 C 2y D x3e�2x : (2.1.18)

By applying (a) of Example 2.1.3 with a D �2, we see that y1 D e�2x is a solution of the com-

plementary equation y0 C 2y D 0. Therefore we seek solutions of (2.1.18) in the form y D ue�2x, so
that

y0 D u0e�2x � 2ue�2x and y0 C 2y D u0e�2x � 2ue�2x C 2ue�2x D u0e�2x: (2.1.19)

Therefore y is a solution of (2.1.18) if and only if

u0e�2x D x3e�2x or, equivalently, u0 D x3:
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Figure 2.1.3 A direction field and integral curves for y0 C 2y D x2e�2x

Therefore

u D x4

4
C c;

and

y D ue�2x D e�2x

�

x4

4
C c

�

is the general solution of (2.1.18).

Figure 2.1.3 shows a direction field and some integral curves for (2.1.18).

Example 2.1.6

(a) Find the general solution

y0 C .cot x/y D x csc x: (2.1.20)

(b) Solve the initial value problem

y0 C .cot x/y D x csc x; y.�=2/ D 1: (2.1.21)

SOLUTION(a) Here p.x/ D cot x and f .x/ D x csc x are both continuous except at the points x D r� ,
where r is an integer. Therefore we seek solutions of (2.1.20) on the intervals .r�; .r C 1/�/. We need

a nontrival solution y1 of the complementary equation; thus, y1 must satisfy y0
1 C .cot x/y1 D 0, which

we rewrite as
y0

1

y1

D � cot x D �cos x

sin x
: (2.1.22)

Integrating this yields
ln jy1j D � ln j sin xj;
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where we take the constant of integration to be zero since we need only one function that satisfies (2.1.22).

Clearly y1 D 1= sin x is a suitable choice. Therefore we seek solutions of (2.1.20) in the form

y D u

sin x
;

so that

y0 D u0

sin x
� u cos x

sin2 x
(2.1.23)

and

y0 C .cot x/y D u0

sin x
� u cos x

sin2 x
C u cot x

sin x

D u0

sin x
� u cos x

sin2 x
C u cos x

sin2 x

D u0

sin x
:

(2.1.24)

Therefore y is a solution of (2.1.20) if and only if

u0= sin x D x csc x D x= sin x or, equivalently, u0 D x:

Integrating this yields

u D x2

2
C c; and y D u

sin x
D x2

2 sin x
C c

sin x
: (2.1.25)

is the general solution of (2.1.20) on every interval .r�; .r C 1/�/ (r Dinteger).

SOLUTION(b) Imposing the initial condition y.�=2/ D 1 in (2.1.25) yields

1 D �2

8
C c or c D 1 � �2

8
:

Thus,

y D x2

2 sin x
C .1 � �2=8/

sin x
is a solution of (2.1.21). The interval of validity of this solution is .0; �/; Figure 2.1.4 shows its graph.
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Figure 2.1.4 Solution of y0 C .cot x/y D x csc x; y.�=2/ D 1
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REMARK: It wasn’t necessary to do the computations (2.1.23) and (2.1.24) in Example 2.1.6, since we

showed in the discussion preceding Example 2.1.5 that if y D uy1 where y0
1 C p.x/y1 D 0, then

y0Cp.x/y D u0y1. We did these computations so you would see this happen in this specific example. We

recommend that you include these “unnecesary” computations in doing exercises, until you’re confident

that you really understand the method. After that, omit them.

We summarize the method of variation of parameters for solving

y0 C p.x/y D f .x/ (2.1.26)

as follows:

(a) Find a function y1 such that
y0

1

y1

D �p.x/:

For convenience, take the constant of integration to be zero.

(b) Write

y D uy1 (2.1.27)

to remind yourself of what you’re doing.

(c) Write u0y1 D f and solve for u0; thus, u0 D f =y1.

(d) Integrate u0 to obtain u, with an arbitrary constant of integration.

(e) Substitute u into (2.1.27) to obtain y.

To solve an equation written as

P0.x/y0 C P1.x/y D F.x/;

we recommend that you divide through by P0.x/ to obtain an equation of the form (2.1.26) and then

follow this procedure.

Solutions in Integral Form

Sometimes the integrals that arise in solving a linear first order equation can’t be evaluated in terms of

elementary functions. In this case the solution must be left in terms of an integral.

Example 2.1.7

(a) Find the general solution of

y0 � 2xy D 1:

(b) Solve the initial value problem

y0 � 2xy D 1; y.0/ D y0: (2.1.28)

SOLUTION(a) To apply variation of parameters, we need a nontrivial solution y1 of the complementary

equation; thus, y0
1 � 2xy1 D 0, which we rewrite as

y0
1

y1

D 2x:
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Integrating this and taking the constant of integration to be zero yields

ln jy1j D x2; so jy1j D ex2

:

We choose y1 D ex2

and seek solutions of (2.1.28) in the form y D uex2

, where

u0ex2 D 1; so u0 D e�x2

:

Therefore

u D c C
Z

e�x2

dx;

but we can’t simplify the integral on the right because there’s no elementary function with derivative

equal to e�x2
. Therefore the best available form for the general solution of (2.1.28) is

y D uex2 D ex2

�

c C
Z

e�x2

dx

�

: (2.1.29)

SOLUTION(b) Since the initial condition in (2.1.28) is imposed at x0 D 0, it is convenient to rewrite

(2.1.29) as

y D ex2

�

c C
Z x

0

e�t2

dt

�

; since

Z 0

0

e�t2

dt D 0:

Setting x D 0 and y D y0 here shows that c D y0. Therefore the solution of the initial value problem is

y D ex2

�

y0 C
Z x

0

e�t2

dt

�

: (2.1.30)

For a given value of y0 and each fixed x, the integral on the right can be evaluated by numerical methods.

An alternate procedure is to apply the numerical integration procedures discussed in Chapter 3 directly to
the initial value problem (2.1.28). Figure 2.1.5 shows graphs of of (2.1.30) for several values of y0.

 x

 y

Figure 2.1.5 Solutions of y0 � 2xy D 1, y.0/ D y0
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An Existence and Uniqueness Theorem

The method of variation of parameters leads to this theorem.

Theorem 2.1.2 Suppose p and f are continuous on an open interval .a; b/; and let y1 be any nontrivial

solution of the complementary equation

y0 C p.x/y D 0

on .a; b/. ThenW
(a) The general solution of the nonhomogeneous equation

y0 C p.x/y D f .x/ (2.1.31)

on .a; b/ is

y D y1.x/

�

c C
Z

f .x/=y1.x/ dx

�

: (2.1.32)

(b) If x0 is an arbitrary point in .a; b/ and y0 is an arbitrary real number; then the initial value problem

y0 C p.x/y D f .x/; y.x0/ D y0

has the unique solution

y D y1.x/

�

y0

y1.x0/
C

Z x

x0

f .t/

y1.t/
dt

�

on .a; b/:

Proof (a) To show that (2.1.32) is the general solution of (2.1.31) on .a; b/, we must prove that:

(i) If c is any constant, the function y in (2.1.32) is a solution of (2.1.31) on .a; b/.

(ii) If y is a solution of (2.1.31) on .a; b/ then y is of the form (2.1.32) for some constant c.

To prove (i), we first observe that any function of the form (2.1.32) is defined on .a; b/, since p and f

are continuous on .a; b/. Differentiating (2.1.32) yields

y0 D y0
1.x/

�

c C
Z

f .x/=y1.x/ dx

�

C f .x/:

Since y0
1 D �p.x/y1, this and (2.1.32) imply that

y0 D �p.x/y1.x/

�

c C
Z

f .x/=y1.x/ dx

�

C f .x/

D �p.x/y.x/ C f .x/;

which implies that y is a solution of (2.1.31).
To prove (ii), suppose y is a solution of (2.1.31) on .a; b/. From the proof of Theorem 2.1.1, we know

that y1 has no zeros on .a; b/, so the function u D y=y1 is defined on .a; b/. Moreover, since

y0 D �py C f and y0
1 D �py1;

u0 D y1y0 � y0
1y

y2
1

D y1.�py C f / � .�py1/y

y2
1

D f

y1

:
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Integrating u0 D f =y1 yields

u D
�

c C
Z

f .x/=y1.x/ dx

�

;

which implies (2.1.32), since y D uy1.

(b) We’ve proved (a), where
R

f .x/=y1.x/ dx in (2.1.32) is an arbitrary antiderivative of f =y1. Now

it’s convenient to choose the antiderivative that equals zero when x D x0, and write the general solution
of (2.1.31) as

y D y1.x/

�

c C
Z x

x0

f .t/

y1.t/
dt

�

:

Since

y.x0/ D y1.x0/

�

c C
Z x0

x0

f .t/

y1.t/
dt

�

D cy1.x0/;

we see that y.x0/ D y0 if and only if c D y0=y1.x0/.

2.1 Exercises

In Exercises 1–5 find the general solution.

1. y0 C ay D 0 (a=constant) 2. y0 C 3x2y D 0

3. xy0 C .ln x/y D 0 4. xy0 C 3y D 0

5. x2y0 C y D 0

In Exercises 6–11 solve the initial value problem.

6. y0 C
�

1 C x

x

�

y D 0; y.1/ D 1

7. xy0 C
�

1 C 1

ln x

�

y D 0; y.e/ D 1

8. xy0 C .1 C x cot x/y D 0; y
��

2

�

D 2

9. y0 �
�

2x

1 C x2

�

y D 0; y.0/ D 2

10. y0 C k

x
y D 0; y.1/ D 3 (k= constant)

11. y0 C .tan kx/y D 0; y.0/ D 2 (k D constant)

In Exercises 12 –15 find the general solution. Also, plot a direction field and some integral curves on the

rectangular region f�2 � x � 2; �2 � y � 2}.

12. C/G y0 C 3y D 1 13. C/G y0 C
�

1

x
� 1

�

y D � 2

x

14. C/G y0 C 2xy D xe�x2

15. C/G y0 C 2x

1 C x2
y D e�x

1 C x2
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In Exercises 16 –24 find the general solution.

16. y0 C 1

x
y D 7

x2
C 3 17. y0 C 4

x � 1
y D 1

.x � 1/5
C sin x

.x � 1/4

18. xy0 C .1 C 2x2/y D x3e�x2 19. xy0 C 2y D 2

x2
C 1

20. y0 C .tan x/y D cos x 21. .1 C x/y0 C 2y D sin x

1 C x

22. .x � 2/.x � 1/y0 � .4x � 3/y D .x � 2/3

23. y0 C .2 sin x cos x/y D e� sin2 x 24. x2y0 C 3xy D ex

In Exercises 25–29 solve the initial value problem and sketch the graph of the solution.

25. C/G y0 C 7y D e3x; y.0/ D 0

26. C/G .1 C x2/y0 C 4xy D 2

1 C x2
; y.0/ D 1

27. C/G xy0 C 3y D 2

x.1 C x2/
; y.�1/ D 0

28. C/G y0 C .cot x/y D cos x; y
��

2

�

D 1

29. C/G y0 C 1

x
y D 2

x2
C 1; y.�1/ D 0

In Exercises 30–37 solve the initial value problem.

30. .x � 1/y0 C 3y D 1

.x � 1/3
C sin x

.x � 1/2
; y.0/ D 1

31. xy0 C 2y D 8x2; y.1/ D 3

32. xy0 � 2y D �x2; y.1/ D 1

33. y0 C 2xy D x; y.0/ D 3

34. .x � 1/y0 C 3y D 1 C .x � 1/ sec2 x

.x � 1/3
; y.0/ D �1

35. .x C 2/y0 C 4y D 1 C 2x2

x.x C 2/3
; y.�1/ D 2

36. .x2 � 1/y0 � 2xy D x.x2 � 1/; y.0/ D 4

37. .x2 � 5/y0 � 2xy D �2x.x2 � 5/; y.2/ D 7

In Exercises 38–42 solve the initial value problem and leave the answer in a form involving a definite

integral. .You can solve these problems numerically by methods discussed in Chapter 3./

38. y0 C 2xy D x2; y.0/ D 3

39. y0 C 1

x
y D sin x

x2
; y.1/ D 2



Section 2.1 Linear First Order Equations 43

40. y0 C y D e�x tan x

x
; y.1/ D 0

41. y0 C 2x

1 C x2
y D ex

.1 C x2/2
; y.0/ D 1

42. xy0 C .x C 1/y D ex2
; y.1/ D 2

43. Experiments indicate that glucose is absorbed by the body at a rate proportional to the amount of

glucose present in the bloodstream. Let � denote the (positive) constant of proportionality. Now

suppose glucose is injected into a patient’s bloodstream at a constant rate of r units per unit of
time. Let G D G.t/ be the number of units in the patient’s bloodstream at time t > 0. Then

G0 D ��G C r;

where the first term on the right is due to the absorption of the glucose by the patient’s body and

the second term is due to the injection. Determine G for t > 0, given that G.0/ D G0. Also, find

limt!1 G.t/.

44. (a) L Plot a direction field and some integral curves for

xy0 � 2y D �1 .A/

on the rectangular region f�1 � x � 1; �:5 � y � 1:5g. What do all the integral curves

have in common?

(b) Show that the general solution of (A) on .�1; 0/ and .0; 1/ is

y D 1

2
C cx2:

(c) Show that y is a solution of (A) on .�1; 1/ if and only if

y D

8

ˆ

<

ˆ

:

1

2
C c1x2; x � 0;

1

2
C c2x2; x < 0;

where c1 and c2 are arbitrary constants.

(d) Conclude from (c) that all solutions of (A) on .�1; 1/ are solutions of the initial value

problem

xy0 � 2y D �1; y.0/ D 1

2
:

(e) Use (b) to show that if x0 ¤ 0 and y0 is arbitrary, then the initial value problem

xy0 � 2y D �1; y.x0/ D y0

has infinitely many solutions on (�1; 1). Explain why this does’nt contradict Theorem 2.1.1(b).

45. Suppose f is continuous on an open interval .a; b/ and ˛ is a constant.

(a) Derive a formula for the solution of the initial value problem

y0 C ˛y D f .x/; y.x0/ D y0; .A/

where x0 is in .a; b/ and y0 is an arbitrary real number.
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(b) Suppose .a; b/ D .a; 1/, ˛ > 0 and lim
x!1

f .x/ D L. Show that if y is the solution of (A),

then lim
x!1

y.x/ D L=˛.

46. Assume that all functions in this exercise are defined on a common interval .a; b/.

(a) Prove: If y1 and y2 are solutions of

y0 C p.x/y D f1.x/

and

y0 C p.x/y D f2.x/

respectively, and c1 and c2 are constants, then y D c1y1 C c2y2 is a solution of

y0 C p.x/y D c1f1.x/ C c2f2.x/:

(This is theprinciple of superposition.)

(b) Use (a) to show that if y1 and y2 are solutions of the nonhomogeneous equation

y0 C p.x/y D f .x/; .A/

then y1 � y2 is a solution of the homogeneous equation

y0 C p.x/y D 0: .B/

(c) Use (a) to show that if y1 is a solution of (A) and y2 is a solution of (B), then y1 C y2 is a

solution of (A).

47. Some nonlinear equations can be transformed into linear equations by changing the dependent

variable. Show that if

g0.y/y0 C p.x/g.y/ D f .x/

where y is a function of x and g is a function of y, then the new dependent variable ´ D g.y/

satisfies the linear equation

´0 C p.x/´ D f .x/:

48. Solve by the method discussed in Exercise 47.

(a) .sec2 y/y0 � 3 tan y D �1 (b) ey2

�

2yy0 C 2

x

�

D 1

x2

(c)
xy0

y
C 2 lny D 4x2 (d)

y0

.1 C y/2
� 1

x.1 C y/
D � 3

x2

49. We’ve shown that if p and f are continuous on .a; b/ then every solution of

y0 C p.x/y D f .x/ .A/

on .a; b/ can be written as y D uy1, where y1 is a nontrivial solution of the complementary
equation for (A) and u0 D f =y1. Now suppose f , f 0, . . . , f .m/ and p, p0, . . . , p.m�1/ are

continuous on .a; b/, where m is a positive integer, and define

f0 D f;

fj D f 0
j �1 C pfj �1; 1 � j � m:

Show that

u.j C1/ D fj

y1

; 0 � j � m:


