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16. Use the ideas developed in Exercise 15 to find infinitely many solutions of the initial value problem

y0 D y2=5; y.0/ D 1

on .�1; 1/.

17. Consider the initial value problem

y0 D 3x.y � 1/1=3; y.x0/ D y0: .A/

(a) For what points .x0; y0/ does Theorem 2.3.1 imply that (A) has a solution?

(b) For what points .x0; y0/ does Theorem 2.3.1 imply that (A) has a unique solution on some

open interval that contains x0?

18. Find nine solutions of the initial value problem

y0 D 3x.y � 1/1=3; y.0/ D 1

that are all defined on .�1; 1/ and differ from each other for values of x in every open interval

that contains x0 D 0.

19. From Theorem 2.3.1, the initial value problem

y0 D 3x.y � 1/1=3; y.0/ D 9

has a unique solution on an open interval that contains x0 D 0. Find the solution and determine

the largest open interval on which it’s unique.

20. (a) From Theorem 2.3.1, the initial value problem

y0 D 3x.y � 1/1=3; y.3/ D �7 .A/

has a unique solution on some open interval that contains x0 D 3. Determine the largest such
open interval, and find the solution on this interval.

(b) Find infinitely many solutions of (A), all defined on .�1; 1/.

21. Prove:

(a) If

f .x; y0/ D 0; a < x < b; .A/

and x0 is in .a; b/, then y � y0 is a solution of

y0 D f .x; y/; y.x0/ D y0

on .a; b/.

(b) If f and fy are continuous on an open rectangle that contains .x0; y0/ and (A) holds, no

solution of y0 D f .x; y/ other than y � y0 can equal y0 at any point in .a; b/.

2.4 TRANSFORMATION OF NONLINEAR EQUATIONS INTO SEPARABLE EQUATIONS

In Section 2.1 we found that the solutions of a linear nonhomogeneous equation

y0 C p.x/y D f .x/
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are of the form y D uy1, where y1 is a nontrivial solution of the complementary equation

y0 C p.x/y D 0 (2.4.1)

and u is a solution of

u0y1.x/ D f .x/:

Note that this last equation is separable, since it can be rewritten as

u0 D f .x/

y1.x/
:

In this section we’ll consider nonlinear differential equations that are not separable to begin with, but can

be solved in a similar fashion by writing their solutions in the form y D uy1, where y1 is a suitably

chosen known function and u satisfies a separable equation. We’llsay in this case that we transformed

the given equation into a separable equation.

Bernoulli Equations

A Bernoulli equation is an equation of the form

y0 C p.x/y D f .x/yr ; (2.4.2)

where r can be any real number other than 0 or 1. (Note that (2.4.2) is linear if and only if r D 0

or r D 1.) We can transform (2.4.2) into a separable equation by variation of parameters: if y1 is a
nontrivial solution of (2.4.1), substituting y D uy1 into (2.4.2) yields

u0y1 C u.y0
1 C p.x/y1/ D f .x/.uy1/r ;

which is equivalent to the separable equation

u0y1.x/ D f .x/ .y1.x//r ur or
u0

ur
D f .x/ .y1.x//r�1 ;

since y0
1 C p.x/y1 D 0.

Example 2.4.1 Solve the Bernoulli equation

y0 � y D xy2: (2.4.3)

Solution Since y1 D ex is a solution of y0 �y D 0, we look for solutions of (2.4.3) in the form y D uex,

where
u0ex D xu2e2x or, equivalently, u0 D xu2ex:

Separating variables yields
u0

u2
D xex;

and integrating yields

� 1

u
D .x � 1/ex C c:

Hence,

u D � 1

.x � 1/ex C c
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Figure 2.4.1 A direction field and integral curves for y0 � y D xy2

and

y D � 1

x � 1 C ce�x
:

Figure 2.4.1 shows direction field and some integral curves of (2.4.3).

Other Nonlinear Equations That Can be Transformed Into Separable Equations

We’ve seen that the nonlinear Bernoulli equation can be transformed into a separable equation by the

substitution y D uy1 if y1 is suitably chosen. Now let’s discover a sufficient condition for a nonlinear

first order differential equation
y0 D f .x; y/ (2.4.4)

to be transformable into a separable equation in the same way. Substituting y D uy1 into (2.4.4) yields

u0y1.x/ C uy0
1.x/ D f .x; uy1.x//;

which is equivalent to
u0y1.x/ D f .x; uy1.x// � uy0

1.x/: (2.4.5)

If

f .x; uy1.x// D q.u/y0
1.x/

for some function q, then (2.4.5) becomes

u0y1.x/ D .q.u/ � u/y0
1.x/; (2.4.6)

which is separable. After checking for constant solutions u � u0 such that q.u0/ D u0, we can separate

variables to obtain
u0

q.u/ � u
D y0

1.x/

y1.x/
:
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Homogeneous Nonlinear Equations

In the text we’ll consider only the most widely studied class of equations for which the method of the

preceding paragraph works. Other types of equations appear in Exercises 44–51.

The differential equation (2.4.4) is said to be homogeneous if x and y occur in f in such a way that

f .x; y/ depends only on the ratio y=x; that is, (2.4.4) can be written as

y0 D q.y=x/; (2.4.7)

where q D q.u/ is a function of a single variable. For example,

y0 D y C xe�y=x

x
D y

x
C e�y=x

and

y0 D y2 C xy � x2

x2
D

�y

x

�2

C y

x
� 1

are of the form (2.4.7), with

q.u/ D u C e�u and q.u/ D u2 C u � 1;

respectively. The general method discussed above can be applied to (2.4.7) with y1 D x (and therefore

y0
1 D 1/. Thus, substituting y D ux in (2.4.7) yields

u0x C u D q.u/;

and separation of variables (after checking for constant solutions u � u0 such that q.u0/ D u0) yields

u0

q.u/ � u
D 1

x
:

Before turning to examples, we point out something that you may’ve have already noticed: the defini-
tion of homogeneous equation given here isn’t the same as the definition given in Section 2.1, where we

said that a linear equation of the form

y0 C p.x/y D 0

is homogeneous. We make no apology for this inconsistency, since we didn’t create it historically, homo-

geneous has been used in these two inconsistent ways. The one having to do with linear equations is the

most important. This is the only section of the book where the meaning defined here will apply.

Since y=x is in general undefined if x D 0, we’ll consider solutions of nonhomogeneous equations
only on open intervals that do not contain the point x D 0.

Example 2.4.2 Solve

y0 D y C xe�y=x

x
: (2.4.8)

Solution Substituting y D ux into (2.4.8) yields

u0x C u D ux C xe�ux=x

x
D u C e�u:

Simplifying and separating variables yields

euu0 D 1

x
:
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Integrating yields eu D ln jxj C c. Therefore u D ln.ln jxj C c/ and y D ux D x ln.ln jxj C c/.

Figure 2.4.2 shows a direction field and integral curves for (2.4.8).
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Figure 2.4.2 A direction field and some integral curves for y0 D y C xe�y=x

x

Example 2.4.3

(a) Solve

x2y0 D y2 C xy � x2: (2.4.9)

(b) Solve the initial value problem

x2y0 D y2 C xy � x2; y.1/ D 2: (2.4.10)

SOLUTION(a) We first find solutions of (2.4.9) on open intervals that don’t contain x D 0. We can
rewrite (2.4.9) as

y0 D y2 C xy � x2

x2

for x in any such interval. Substituting y D ux yields

u0x C u D .ux/2 C x.ux/ � x2

x2
D u2 C u � 1;

so

u0x D u2 � 1: (2.4.11)
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By inspection this equation has the constant solutions u � 1 and u � �1. Therefore y D x and y D �x

are solutions of (2.4.9). If u is a solution of (2.4.11) that doesn’t assume the values ˙1 on some interval,

separating variables yields
u0

u2 � 1
D 1

x
;

or, after a partial fraction expansion,

1

2

�

1

u � 1
� 1

u C 1

�

u0 D 1

x
:

Multiplying by 2 and integrating yields

ln

ˇ

ˇ

ˇ

ˇ

u � 1

u C 1

ˇ

ˇ

ˇ

ˇ

D 2 ln jxj C k;

or
ˇ

ˇ

ˇ

ˇ

u � 1

u C 1

ˇ

ˇ

ˇ

ˇ

D ekx2;

which holds if
u � 1

u C 1
D cx2 (2.4.12)

where c is an arbitrary constant. Solving for u yields

u D 1 C cx2

1 � cx2
:
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Figure 2.4.3 A direction field and integral curves for

x2y0 D y2 C xy � x2
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Figure 2.4.4 Solutions of x2y0 D y2 C xy � x2,

y.1/ D 2

Therefore

y D ux D x.1 C cx2/

1 � cx2
(2.4.13)

is a solution of (2.4.10) for any choice of the constant c. Setting c D 0 in (2.4.13) yields the solution

y D x. However, the solution y D �x can’t be obtained from (2.4.13). Thus, the solutions of (2.4.9) on
intervals that don’t contain x D 0 are y D �x and functions of the form (2.4.13).
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The situation is more complicated if x D 0 is the open interval. First, note that y D �x satisfies (2.4.9)

on .�1; 1/. If c1 and c2 are arbitrary constants, the function

y D

8

ˆ

ˆ

<

ˆ

ˆ

:

x.1 C c1x2/

1 � c1x2
; a < x < 0;

x.1 C c2x2/

1 � c2x2
; 0 � x < b;

(2.4.14)

is a solution of (2.4.9) on .a; b/, where

a D

8

<

:

� 1
p

c1

if c1 > 0;

�1 if c1 � 0;

and b D

8

<

:

1
p

c2

if c2 > 0;

1 if c2 � 0:

We leave it to you to verify this. To do so, note that if y is any function of the form (2.4.13) then y.0/ D 0

and y0.0/ D 1.

Figure 2.4.3 shows a direction field and some integral curves for (2.4.9).

SOLUTION(b) We could obtain c by imposing the initial condition y.1/ D 2 in (2.4.13), and then solving

for c. However, it’s easier to use (2.4.12). Since u D y=x, the initial condition y.1/ D 2 implies that

u.1/ D 2. Substituting this into (2.4.12) yields c D 1=3. Hence, the solution of (2.4.10) is

y D x.1 C x2=3/

1 � x2=3
:

The interval of validity of this solution is .�
p

3;
p

3/. However, the largest interval on which (2.4.10)
has a unique solution is .0;

p
3/. To see this, note from (2.4.14) that any function of the form

y D

8

ˆ

ˆ

<

ˆ

ˆ

:

x.1 C cx2/

1 � cx2
; a < x � 0;

x.1 C x2=3/

1 � x2=3
; 0 � x <

p
3;

(2.4.15)

is a solution of (2.4.10) on .a;
p

3/, where a D �1=
p

c if c > 0 or a D �1 if c � 0. (Why doesn’t this

contradict Theorem 2.3.1?)

Figure 2.4.4 shows several solutions of the initial value problem (2.4.10). Note that these solutions
coincide on .0;

p
3/.

In the last two examples we were able to solve the given equations explicitly. However, this isn’t always

possible, as you’ll see in the exercises.

2.4 Exercises

In Exercises 1–4 solve the given Bernoulli equation.

1. y0 C y D y2 2. 7xy0 � 2y D �x2

y6

3. x2y0 C 2y D 2e1=xy1=2 4. .1 C x2/y0 C 2xy D 1

.1 C x2/y

In Exercises 5 and 6 find all solutions. Also, plot a direction field and some integral curves on the

indicated rectangular region.
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5. C/G y0 � xy D x3y3I f�3 � x � 3; 2 � y � 2g

6. C/G y0 � 1 C x

3x
y D y4I f�2 � x � 2; �2 � y � 2g

In Exercises 7–11 solve the initial value problem.

7. y0 � 2y D xy3; y.0/ D 2
p

2

8. y0 � xy D xy3=2; y.1/ D 4

9. xy0 C y D x4y4; y.1/ D 1=2

10. y0 � 2y D 2y1=2; y.0/ D 1

11. y0 � 4y D 48x

y2
; y.0/ D 1

In Exercises 12 and 13 solve the initial value problem and graph the solution.

12. C/G x2y0 C 2xy D y3; y.1/ D 1=
p

2

13. C/G y0 � y D xy1=2; y.0/ D 4

14. You may have noticed that the logistic equation

P 0 D aP.1 � ˛P /

from Verhulst’s model for population growth can be written in Bernoulli form as

P 0 � aP D �a˛P 2:

This isn’t particularly interesting, since the logistic equation is separable, and therefore solvable

by the method studied in Section 2.2. So let’s consider a more complicated model, where a is

a positive constant and ˛ is a positive continuous function of t on Œ0; 1/. The equation for this
model is

P 0 � aP D �a˛.t/P 2;

a non-separable Bernoulli equation.

(a) Assuming that P.0/ D P0 > 0, find P for t > 0. HINT: Express your result in terms of the

integral
R t

0
˛.�/ea� d� .

(b) Verify that your result reduces to the known results for the Malthusian model where ˛ D 0,

and the Verhulst model where ˛ is a nonzero constant.

(c) Assuming that

lim
t!1

e�at

Z t

0

˛.�/ea� d� D L

exists (finite or infinite), find limt!1 P.t/.

In Exercises 15–18 solve the equation explicitly.

15. y0 D y C x

x
16. y0 D y2 C 2xy

x2

17. xy3y0 D y4 C x4
18. y0 D y

x
C sec

y

x
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In Exercises 19-21 solve the equation explicitly. Also, plot a direction field and some integral curves on

the indicated rectangular region.

19. C/G x2y0 D xy C x2 C y2I f�8 � x � 8; �8 � y � 8g

20. C/G xyy0 D x2 C 2y2I f�4 � x � 4; �4 � y � 4g

21. C/G y0 D 2y2 C x2e�.y=x/2

2xy
I f�8 � x � 8; �8 � y � 8g

In Exercises 22–27 solve the initial value problem.

22. y0 D xy C y2

x2
; y.�1/ D 2

23. y0 D x3 C y3

xy2
; y.1/ D 3

24. xyy0 C x2 C y2 D 0; y.1/ D 2

25. y0 D y2 � 3xy � 5x2

x2
; y.1/ D �1

26. x2y0 D 2x2 C y2 C 4xy; y.1/ D 1

27. xyy0 D 3x2 C 4y2; y.1/ D
p

3

In Exercises 28–34 solve the given homogeneous equation implicitly.

28. y0 D x C y

x � y
29. .y0x � y/.ln jyj � ln jxj/ D x

30. y0 D y3 C 2xy2 C x2y C x3

x.y C x/2
31. y0 D x C 2y

2x C y

32. y0 D y

y � 2x 33. y0 D xy2 C 2y3

x3 C x2y C xy2

34. y0 D x3 C x2y C 3y3

x3 C 3xy2

35. L

(a) Find a solution of the initial value problem

x2y0 D y2 C xy � 4x2; y.�1/ D 0 .A/

on the interval .�1; 0/. Verify that this solution is actually valid on .�1; 1/.

(b) Use Theorem 2.3.1 to show that (A) has a unique solution on .�1; 0/.

(c) Plot a direction field for the differential equation in (A) on a square

f�r � x � r; �r � y � rg;

where r is any positive number. Graph the solution you obtained in (a) on this field.

(d) Graph other solutions of (A) that are defined on .�1; 1/.
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(e) Graph other solutions of (A) that are defined only on intervals of the form .�1; a/, where is

a finite positive number.

36. L

(a) Solve the equation
xyy0 D x2 � xy C y2 .A/

implicitly.

(b) Plot a direction field for (A) on a square

f0 � x � r; 0 � y � rg

where r is any positive number.

(c) Let K be a positive integer. (You may have to try several choices for K.) Graph solutions of

the initial value problems

xyy0 D x2 � xy C y2; y.r=2/ D kr

K
;

for k D 1, 2, . . . , K. Based on your observations, find conditions on the positive numbers

x0 and y0 such that the initial value problem

xyy0 D x2 � xy C y2; y.x0/ D y0; .B/

has a unique solution (i) on .0; 1/ or (ii) only on an interval .a; 1/, where a > 0?

(d) What can you say about the graph of the solution of (B) as x ! 1? (Again, assume that

x0 > 0 and y0 > 0.)

37. L

(a) Solve the equation

y0 D 2y2 � xy C 2x2

xy C 2x2
.A/

implicitly.

(b) Plot a direction field for (A) on a square

f�r � x � r; �r � y � rg

where r is any positive number. By graphing solutions of (A), determine necessary and

sufficient conditions on .x0; y0/ such that (A) has a solution on (i) .�1; 0/ or (ii) .0; 1/

such that y.x0/ D y0.

38. L Follow the instructions of Exercise 37 for the equation

y0 D xy C x2 C y2

xy
:

39. L Pick any nonlinear homogeneous equation y0 D q.y=x/ you like, and plot direction fields on

the square f�r � x � r; �r � y � rg, where r > 0. What happens to the direction field as you
vary r? Why?
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40. Prove: If ad � bc ¤ 0, the equation

y0 D ax C by C ˛

cx C dy C ˇ

can be transformed into the homogeneous nonlinear equation

dY

dX
D aX C bY

cX C dY

by the substitution x D X � X0; y D Y � Y0, where X0 and Y0 are suitably chosen constants.

In Exercises 41-43 use a method suggested by Exercise 40 to solve the given equation implicitly.

41. y0 D �6x C y � 3

2x � y � 1
42. y0 D 2x C y C 1

x C 2y � 4

43. y0 D �x C 3y � 14

x C y � 2

In Exercises 44–51 find a function y1 such that the substitution y D uy1 transforms the given equation

into a separable equation of the form (2.4.6). Then solve the given equation explicitly.

44. 3xy2y0 D y3 C x 45. xyy0 D 3x6 C 6y2

46. x3y0 D 2.y2 C x2y � x4/ 47. y0 D y2e�x C 4y C 2ex

48. y0 D y2 C y tan x C tan2 x

sin2 x

49. x.ln x/2y0 D �4.ln x/2 C y ln x C y2

50. 2x.y C 2
p

x/y0 D .y C p
x/2

51. .y C ex2

/y0 D 2x.y2 C yex2 C e2x2

/

52. Solve the initial value problem

y0 C 2

x
y D 3x2y2 C 6xy C 2

x2.2xy C 3/
; y.2/ D 2:

53. Solve the initial value problem

y0 C 3

x
y D 3x4y2 C 10x2y C 6

x3.2x2y C 5/
; y.1/ D 1:

54. Prove: If y is a solution of a homogeneous nonlinear equation y0 D q.y=x/, so is y1 D y.ax/=a,

where a is any nonzero constant.

55. A generalized Riccati equation is of the form

y0 D P.x/ C Q.x/y C R.x/y2 : .A/

(If R � �1, (A) is a Riccati equation.) Let y1 be a known solution and y an arbitrary solution of
(A). Let ´ D y � y1. Show that ´ is a solution of a Bernoulli equation with n D 2.
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In Exercises 56–59, given that y1 is a solution of the given equation, use the method suggested by Exercise

55 to find other solutions.

56. y0 D 1 C x � .1 C 2x/y C xy2; y1 D 1

57. y0 D e2x C .1 � 2ex/y C y2; y1 D ex

58. xy0 D 2 � x C .2x � 2/y � xy2; y1 D 1

59. xy0 D x3 C .1 � 2x2/y C xy2; y1 D x

2.5 EXACT EQUATIONS

In this section it’s convenient to write first order differential equations in the form

M.x; y/ dx C N.x; y/ dy D 0: (2.5.1)

This equation can be interpreted as

M.x; y/ C N.x; y/
dy

dx
D 0; (2.5.2)

where x is the independent variable and y is the dependent variable, or as

M.x; y/
dx

dy
C N.x; y/ D 0; (2.5.3)

where y is the independent variable and x is the dependent variable. Since the solutions of (2.5.2) and

(2.5.3) will often have to be left in implicit, form we’ll say that F.x; y/ D c is an implicit solution of

(2.5.1) if every differentiable function y D y.x/ that satisfies F.x; y/ D c is a solution of (2.5.2) and

every differentiable function x D x.y/ that satisfies F.x; y/ D c is a solution of (2.5.3).
Here are some examples:

Equation (2.5.1) Equation (2.5.2) Equation (2.5.3)

3x2y2 dx C 2x3y dy D 0 3x2y2 C 2x3y
dy

dx
D 0 3x2y2

dx

dy
C 2x3y D 0

.x2 C y2/ dx C 2xy dy D 0 .x2 C y2/ C 2xy
dy

dx
D 0 .x2 C y2/

dx

dy
C 2xy D 0

3y sin x dx � 2xy cos x dy D 0 3y sin x � 2xy cos x
dy

dx
D 0 3y sin x

dx

dy
� 2xy cos x D 0

Note that a separable equation can be written as (2.5.1) as

M.x/ dx C N.y/ dy D 0:

We’ll develop a method for solving (2.5.1) under appropriate assumptions on M and N . This method

is an extension of the method of separation of variables (Exercise 41). Before stating it we consider an
example.


