1. Find the general solution to the differential equation $e^{x} y^{\prime}+y=0$.
2. Solve the initial value problem $y^{\prime}-y=2 e^{x}, y(1)=3 e$.
3. Solve the initial value problem $y^{\prime}=\frac{2 x}{1+2 y}, y(2)=0$. An implicit solution is sufficient: you do not need to solve for y.
4. Determine if $y=\sqrt{4-x^{2}}$ is a solution to the differential equation $y y^{\prime}+x=0$. Your answer must be justified by your calculations.
5. Find all equilibrium solutions to the differential equation $y^{\prime}=y^{2}\left(1-y^{2}\right)$ and identify each equilibrium as stable, semi-stable, or unstable.
6. Suppose that a mass has been attached to a carefully engineered "progressive" spring and as a result it's position $y=y(t)$ satisfies the autonomous second-order differential equation $y^{\prime \prime}+y^{3}=0$. Find a phase plane solution to the differential equation (implicit solutions are preferred).
7. A population grows logistically according to the equation $P^{\prime}=\frac{3}{50} P\left(1-\frac{1}{500} P\right)$ and $P(0)>0$. Find $\lim _{t \rightarrow \infty} P(t)$. Hint: there is no need to solve the differential equation.
