Math 260

Exam 1

Instructions: Solve 6 of the following 7 problems and write your solutions on the provided paper, clearly labeling each solution (do not write your solutions on this sheet). All solutions should include a clear method or argument and should use English words and sentences when appropriate. Clear and comprehensible solutions will generally earn more points than those that are hard to understand; a correct solution without supporting work may receive little or no credit. Indicate which problem you are skipping by placing an **X** in the corresponding box below. Leave the rest blank (I'll use them to record your scores).

Calculators, phones, and all other devices are forbidden. Answers may be left unsimplified.

Name:							
1	2	3	4	5	6	7	Total

Theorem. If the characteristic polynomial of ay'' + by' + cy' = 0 has...

a) ...distinct real roots r_1 and r_2 , then a general solution is $y = c_1 e^{r_1 x} + c_2 e^{r_2 x}$

b) ...a single (repeated) real root r, then a general solution is $y = e^{rx}(c_1 + c_2x)$

c) ...complex conjugate roots $\lambda \pm i\omega$ (where $\omega > 0$), then a general solution is $y = e^{\lambda x}(c_1 \cos \omega x + c_2 \sin \omega x)$

Thoerem. If y_p is any particular solution to the differential equation y'' + p(x)y' + q(x)y = f(x) and $\{y_1, y_2\}$ is a fundamental set of solutions to the complementary equation, then a general solution for differential equation is

$$y = y_p + c_1 y_1 + c_2 y_2$$

Thoerem (Superposition). If y_{p_1} is a particular solution of $y'' + p(x)y' + q(x)y = f_1(x)$ and y_{p_2} is a particular solution of $y'' + p(x)y' + q(x)y = f_2(x)$, then a particular solution of

$$y'' + p(x)y' + q(x)y = f_1(x) + f_2(x)$$

is

$$y_p = y_{p_1} + y_{p_2}$$

Method. To find a particular solution for $ay'' + by' + cy = e^{\alpha x}G(x)$ (where G is a polynomial), solve for the coefficients of Q(x) in the following (where Q is a polynomial with the same degree as G):

- a) $y_p = e^{\alpha x} Q(x)$ if $e^{\alpha x}$ is not a solution to the complementary equation;
- b) $y_p = xe^{\alpha x}Q(x)$ if $xe^{\alpha x}$ is not a solution to the complementary equation, but $e^{\alpha x}$ is a solution to the complementary equation;
- c) $y_p = x^2 e^{\alpha x} Q(x)$ if $x e^{\alpha x}$ and $e^{\alpha x}$ are both solutions to the complementary equation.

Method. To find a particular solution for $ay'' + by' + cy = P(x) \cos \omega x + Q(x) \sin \omega x$ (where P and Q are polynomials), solve for the coefficients of A(x) and B(x) in the following (where A and B are polynomials with degree equal to the larger of the degrees of P and Q):

- a) $y_p = A(x) \cos \omega x + B(x) \sin \omega x$ if $\cos \omega x$ and $\sin \omega x$ are not solutions to the complementary equation;
- b) $y_p = x [A(x) \cos \omega x + B(x) \sin \omega x]$ if $\cos \omega x$ and $\sin \omega x$ are solutions to the complementary equation;

1. Determine which one of the following pairs of functions y_1 and y_2 forms a fundamental set of solutions to the differential equation $x^2y'' + xy' - 4y = 0$ on the interval $(0, \infty)$. You may use the Wronskian (but you are not required to use the Wronskian): $W(y_1, y_2) = y_1y'_2 - y'_1y_2$.

- a) $y_1 = x^2$ and $y_2 = x$ b) $y_1 = x^2$ and $y_2 = x^{-2}$
- c) $y_1 = x^2$ and $y_2 = -2x^2$
- **2.** Solve the initial value problem: y'' 4y' + 3y = 0, y(0) = 2, y'(0) = 0.
- **3.** Find a number A so that $y_p = Ax^4$ is a solution of $x^2y'' 3xy' + 13y = 2x^4$.
- 4. Find a particular solution of $y'' 3y' 10y = 6e^{5t}$.

5. A 4 kg mass is attached to a spring with a spring constant of k = 1 and a damping constant of c = 4. Find a general solution for the motion of the spring (your answer should not be a differential equation; it should have 2 unknown constants since I have not provided you with initial conditions).

6. An object stretches a spring 0.5 m at equilibrium. An oscillating external force of $5 \sin 4t$ N is applied. Determine if the natural frequency of the spring-mass system is greater than, less than, or equal to the frequency of the applied force. Use g = 9.8 m/s² for the acceleration of gravity.

7. Find a_0, a_1, a_2, a_3 , and a_4 in the power series $y = \sum_{n=0}^{\infty} a_n x^n$ for the solution to the initial value problem $(x^2 - 1)y'' + y = 0$, y(0) = -2, y'(0) = 0.