Instructions: Solve 6 of the following 7 problems and write your solutions on the provided paper, clearly labeling each solution (do not write your solutions on this sheet). All solutions should include a clear method or argument and should use English words and sentences when appropriate. Clear and comprehensible solutions will generally earn more points than those that are hard to understand; a correct solution without supporting work may receive little or no credit. Indicate which problem you are skipping by placing an \mathbf{X} in the corresponding box below. Leave the rest blank (I'll use them to record your scores).
Calculators, phones, and all other devices are forbidden. Answers may be left unsimplified.

Name:							
1	2	3	4	5	6	7	Total

Thoerem. If the characteristic polynomial of $a y^{\prime \prime}+b y^{\prime}+c y^{\prime}=0$ has...
a) ...distinct real roots r_{1} and r_{2}, then a general solution is $y=c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x}$
b) ...a single (repeated) real root r, then a general solution is $y=e^{r x}\left(c_{1}+c_{2} x\right)$
c) ...complex conjugate roots $\lambda \pm i \omega$ (where $\omega>0$), then a general solution is $y=e^{\lambda x}\left(c_{1} \cos \omega x+c_{2} \sin \omega x\right)$

Thoerem. If y_{p} is any particular solution to the differential equation $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)$ and $\left\{y_{1}, y_{2}\right\}$ is a fundamental set of solutions to the complementary equation, then a general solution for differential equation is

$$
y=y_{p}+c_{1} y_{1}+c_{2} y_{2}
$$

Thoerem (Superposition). If $y_{p_{1}}$ is a particular solution of $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f_{1}(x)$ and $y_{p_{2}}$ is a particular solution of $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f_{2}(x)$, then a particular solution of

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f_{1}(x)+f_{2}(x)
$$

is

$$
y_{p}=y_{p_{1}}+y_{p_{2}}
$$

Method. To find a particular solution for $a y^{\prime \prime}+b y^{\prime}+c y=e^{\alpha x} G(x)$ (where G is a polynomial), solve for the coefficients of $Q(x)$ in the following (where Q is a polynomial with the same degree as G):
a) $y_{p}=e^{\alpha x} Q(x)$ if $e^{\alpha x}$ is not a solution to the complementary equation;
b) $y_{p}=x e^{\alpha x} Q(x)$ if $x e^{\alpha x}$ is not a solution to the complementary equation, but $e^{\alpha x}$ is a solution to the complementary equation;
c) $y_{p}=x^{2} e^{\alpha x} Q(x)$ if $x e^{\alpha x}$ and $e^{\alpha x}$ are both solutions to the complementary equation.

Method. To find a particular solution for $a y^{\prime \prime}+b y^{\prime}+c y=P(x) \cos \omega x+Q(x) \sin \omega x$ (where P and Q are polynomials), solve for the coefficients of $A(x)$ and $B(x)$ in the following (where A and B are polynomials with degree equal to the larger of the degrees of P and Q):
a) $y_{p}=A(x) \cos \omega x+B(x) \sin \omega x$ if $\cos \omega x$ and $\sin \omega x$ are not solutions to the complementary equation;
b) $y_{p}=x[A(x) \cos \omega x+B(x) \sin \omega x]$ if $\cos \omega x$ and $\sin \omega x$ are solutions to the complementary equation;

1. Determine which one of the following pairs of functions y_{1} and y_{2} forms a fundamental set of solutions to the differential equation $x^{2} y^{\prime \prime}+x y^{\prime}-4 y=0$ on the interval $(0, \infty)$. You may use the Wronskian (but you are not required to use the Wronskian): $W\left(y_{1}, y_{2}\right)=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}$.
a) $y_{1}=x^{2}$ and $y_{2}=x$
b) $y_{1}=x^{2}$ and $y_{2}=x^{-2}$
c) $y_{1}=x^{2}$ and $y_{2}=-2 x^{2}$
2. Solve the initial value problem: $y^{\prime \prime}-4 y^{\prime}+3 y=0, y(0)=2, y^{\prime}(0)=0$.
3. Find a number A so that $y_{p}=A x^{4}$ is a solution of $x^{2} y^{\prime \prime}-3 x y^{\prime}+13 y=2 x^{4}$.
4. Find a particular solution of $y^{\prime \prime}-3 y^{\prime}-10 y=6 e^{5 t}$.
5. A 4 kg mass is attached to a spring with a spring constant of $k=1$ and a damping constant of $c=4$. Find a general solution for the motion of the spring (your answer should not be a differential equation; it should have 2 unknown constants since I have not provided you with initial conditions).
6. An object stretches a spring 0.5 m at equilibrium. An oscillating external force of $5 \sin 4 t \mathrm{~N}$ is applied. Determine if the natural frequency of the spring-mass system is greater than, less than, or equal to the frequency of the applied force. Use $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ for the acceleration of gravity.
7. Find $a_{0}, a_{1}, a_{2}, a_{3}$, and a_{4} in the power series $y=\sum_{n=0}^{\infty} a_{n} x^{n}$ for the solution to the initial value problem $\left(x^{2}-1\right) y^{\prime \prime}+y=0, y(0)=-2, y^{\prime}(0)=0$.
