Exam 1

Thoerem. The general solution to the homogeneous linear differential equation $y^{\prime}+p(x) y=0$ is

$$
y=c e^{-P(x)}
$$

where $P^{\prime}(x)=p(x)$.
Thoerem. The general solution to the linear differential equation $y^{\prime}+p(x) y=f(x)$ is $y=u y_{1}$ where
a) y_{1} is any particular solution to the complementary equation $y^{\prime}+p(x) y=0$ and
b) $u=\int \frac{f(x)}{y_{1}(x)} d x$ (add a constant here).

Conversion to the Ponicaré phase plane: $y^{\prime}=v$ and $y^{\prime \prime}=v \frac{d v}{d y}$.

Exam 2

Thoerem. If the characteristic polynomial of $a y^{\prime \prime}+b y^{\prime}+c y^{\prime}=0$ has...
a) ...distinct real roots r_{1} and r_{2}, then a general solution is $y=c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x}$
b) ...a single (repeated) real root r, then a general solution is $y=e^{r x}\left(c_{1}+c_{2} x\right)$
c) ...complex conjugate roots $\lambda \pm i \omega$ (where $\omega>0$), then a general solution is $y=e^{\lambda x}\left(c_{1} \cos \omega x+c_{2} \sin \omega x\right)$

Thoerem. If y_{p} is any particular solution to the differential equation $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)$ and $\left\{y_{1}, y_{2}\right\}$ is a fundamental set of solutions to the complementary equation, then a general solution for differential equation is

$$
y=y_{p}+c_{1} y_{1}+c_{2} y_{2}
$$

Thoerem (Superposition). If $y_{p_{1}}$ is a particular solution of $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f_{1}(x)$ and $y_{p_{2}}$ is a particular solution of $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f_{2}(x)$, then a particular solution of

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f_{1}(x)+f_{2}(x)
$$

is

$$
y_{p}=y_{p_{1}}+y_{p_{2}}
$$

Method. To find a particular solution for $a y^{\prime \prime}+b y^{\prime}+c y=e^{\alpha x} G(x)$ (where G is a polynomial), solve for the coefficients of $Q(x)$ in the following (where Q is a polynomial with the same degree as G):
a) $y_{p}=e^{\alpha x} Q(x)$ if $e^{\alpha x}$ is not a solution to the complementary equation;
b) $y_{p}=x e^{\alpha x} Q(x)$ if $x e^{\alpha x}$ is not a solution to the complementary equation, but $e^{\alpha x}$ is a solution to the complementary equation;
c) $y_{p}=x^{2} e^{\alpha x} Q(x)$ if $x e^{\alpha x}$ and $e^{\alpha x}$ are both solutions to the complementary equation.

Method. To find a particular solution for $a y^{\prime \prime}+b y^{\prime}+c y=P(x) \cos \omega x+Q(x) \sin \omega x$ (where P and Q are polynomials), solve for the coefficients of $A(x)$ and $B(x)$ in the following (where A and B are polynomials with degree equal to the larger of the degrees of P and Q):
a) $y_{p}=A(x) \cos \omega x+B(x) \sin \omega x$ if $\cos \omega x$ and $\sin \omega x$ are not solutions to the complementary equation;
b) $y_{p}=x[A(x) \cos \omega x+B(x) \sin \omega x]$ if $\cos \omega x$ and $\sin \omega x$ are solutions to the complementary equation;

Power Series Solutions

Method (Power series solutions for $\left.P_{0}(x) y^{\prime \prime}+P_{1}(x) y^{\prime}+P_{2}(x) y=0\right)$. If $P_{0}\left(x_{0}\right) \neq 0$, then we'll say that x_{0} is an ordinary point of the differential equation. We seek a power series solution centered at x_{0} :

$$
y=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+a_{3}\left(x-x_{0}\right)^{3}+\ldots
$$

Using these in our differential equation gives recursive formulas for the coefficients. Note that $y\left(x_{0}\right)=a_{0}$ and $y^{\prime}\left(x_{0}\right)=a_{1}$. Thus, inital values for $y\left(x_{0}\right)$ and $y^{\prime}\left(x_{0}\right)$ allow us to find values for all the coefficients.

Comment. The method works at any ordinary point, but we'll usually work with $x_{0}=0$.

