Exam 1

Theorem. The general solution to the homogeneous linear differential equation y' + p(x)y = 0 is

$$y = ce^{-P(x)}$$

where P'(x) = p(x).

Theorem. The general solution to the linear differential equation y' + p(x)y = f(x) is $y = uy_1$ where

a) y_1 is any particular solution to the complementary equation y' + p(x)y = 0 and

b)
$$u = \int \frac{f(x)}{y_1(x)} dx$$
 (add a constant here).

Conversion to the Ponicaré phase plane: y' = v and $y'' = v \frac{dv}{dy}$.

Exam 2

Theorem. If the characteristic polynomial of ay'' + by' + cy' = 0 has...

- a) ...distinct real roots r_1 and r_2 , then a general solution is $y = c_1 e^{r_1 x} + c_2 e^{r_2 x}$
- b) ...a single (repeated) real root r, then a general solution is $y = e^{rx}(c_1 + c_2x)$
- c) ...complex conjugate roots $\lambda \pm i\omega$ (where $\omega > 0$), then a general solution is $y = e^{\lambda x}(c_1 \cos \omega x + c_2 \sin \omega x)$

Thoerem. If y_p is any particular solution to the differential equation y'' + p(x)y' + q(x)y = f(x) and $\{y_1, y_2\}$ is a fundamental set of solutions to the complementary equation, then a general solution for differential equation is

$$y = y_p + c_1 y_1 + c_2 y_2$$

Theorem (Superposition). If y_{p_1} is a particular solution of $y'' + p(x)y' + q(x)y = f_1(x)$ and y_{p_2} is a particular solution of $y'' + p(x)y' + q(x)y = f_2(x)$, then a particular solution of

$$y'' + p(x)y' + q(x)y = f_1(x) + f_2(x)$$

is

 $y_p = y_{p_1} + y_{p_2}$

Method. To find a particular solution for $ay'' + by' + cy = e^{\alpha x}G(x)$ (where G is a polynomial), solve for the coefficients of Q(x) in the following (where Q is a polynomial with the same degree as G):

- a) $y_p = e^{\alpha x}Q(x)$ if $e^{\alpha x}$ is not a solution to the complementary equation;
- b) $y_p = xe^{\alpha x}Q(x)$ if $xe^{\alpha x}$ is not a solution to the complementary equation, but $e^{\alpha x}$ is a solution to the complementary equation;
- c) $y_p = x^2 e^{\alpha x} Q(x)$ if $x e^{\alpha x}$ and $e^{\alpha x}$ are both solutions to the complementary equation.

Method. To find a particular solution for $ay'' + by' + cy = P(x) \cos \omega x + Q(x) \sin \omega x$ (where P and Q are polynomials), solve for the coefficients of A(x) and B(x) in the following (where A and B are polynomials with degree equal to the larger of the degrees of P and Q):

a) $y_p = A(x) \cos \omega x + B(x) \sin \omega x$ if $\cos \omega x$ and $\sin \omega x$ are not solutions to the complementary equation;

b) $y_p = x [A(x) \cos \omega x + B(x) \sin \omega x]$ if $\cos \omega x$ and $\sin \omega x$ are solutions to the complementary equation;

Power Series Solutions

Method (Power series solutions for $P_0(x)y'' + P_1(x)y' + P_2(x)y = 0$). If $P_0(x_0) \neq 0$, then we'll say that x_0 is an **ordinary point** of the differential equation. We seek a power series solution centered at x_0 :

$$y = \sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + a_3 (x - x_0)^3 + \dots$$

Using these in our differential equation gives recursive formulas for the coefficients. Note that $y(x_0) = a_0$ and $y'(x_0) = a_1$. Thus, initial values for $y(x_0)$ and $y'(x_0)$ allow us to find values for all the coefficients.

Comment. The method works at any ordinary point, but we'll usually work with $x_0 = 0$.