Method. Let A be an 2×2 matrix: $\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$. To solve the IVP $\mathbf{y}^{\prime}=A \mathbf{y}, \mathbf{y}(0)=\mathbf{b}$:

1. Find the eigenvalues of A.
2. Find an eigenvector for each eigenvalue.
3. Use the theorem below to find a fundamental set of solutions $\mathbf{y}_{1}, \mathbf{y}_{2}$.
4. Your general solution is $\mathbf{y}(t)=c_{1} \mathbf{y}_{1}(t)+c_{2} \mathbf{y}_{2}(t)$.
5. Use the initial condition to solve the system of equations for $c_{1}, c_{2}: \mathbf{b}=\mathbf{y}(0)=c_{1} \mathbf{y}_{1}(0)+c_{2} \mathbf{y}_{2}(0)$.

Definition. The matrix I is the identity matrix $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. Thus $A-\lambda I=\left[\begin{array}{cc}a_{11}-\lambda & a_{12} \\ a_{21} & a_{22}-\lambda\end{array}\right]$ and $\operatorname{det}(A-\lambda I)=\left(a_{11}-\lambda\right)\left(a_{22}-\lambda\right)-a_{12} a_{21}$.

Method. The eigenvalues of A are the solutions to $\operatorname{det}(A-\lambda I)=0$ (solve for λ, often using the quadratic formula). Find the eigenvector(s) corresponding to each eigenvalue λ by solving $(A-\lambda I) \mathbf{x}=0$ (sub in the eigenvalue and solve for the two entries in \mathbf{x}). In 2-dimensional systems, the solution to is usually a line; to find an eigenvalue, just choose a non-zero value for x_{1} or x_{2} and solve for the other.
Theorem. Let A be an 2×2 matrix. To find a fundamental set of solutions to $\mathbf{y}^{\prime}=A \mathbf{y}$:
i) If A has real eigenvalues λ_{1}, λ_{2} with associated linearly independent eigenvectors $\mathbf{x}_{1}, \mathbf{x}_{2}$, then the functions

$$
\begin{aligned}
& \mathbf{y}_{1}=\mathbf{x}_{1} e^{\lambda_{1} t} \\
& \mathbf{y}_{2}=\mathbf{x}_{2} e^{\lambda_{2} t}
\end{aligned}
$$

form a fundamental set of solutions of $A \mathbf{y}=\mathbf{y}^{\prime}$.
ii) If A has an eigenvalue λ with multiplicity of 2 or more and with an associated eigenspace of dimension 1 and \mathbf{x} is any eigenvector, then there are infinitely many vectors \mathbf{u} such that $(A-\lambda I) \mathbf{u}=\mathbf{x}$. If \mathbf{u} is any such vector, then

$$
\begin{aligned}
& \mathbf{y}_{1}=\mathbf{x} e^{\lambda t} \\
& \mathbf{y}_{2}=\mathbf{x} t e^{\lambda t}+\mathbf{u} e^{\lambda t}
\end{aligned}
$$

are linearly independent solutions of $A \mathbf{y}=\mathbf{y}^{\prime}$.
iii) If A has a complex eigenvalue $\lambda=\alpha+i \beta$ (with $\beta \neq 0$) with associated eigenvector $\mathbf{x}=\mathbf{u}+i \mathbf{v}$, then both \mathbf{u} and \mathbf{v} are nonzero and

$$
\begin{aligned}
& \mathbf{y}_{1}=e^{\alpha t}(\mathbf{u} \cos \beta t-\mathbf{v} \sin \beta t) \\
& \mathbf{y}_{2}=e^{\alpha t}(\mathbf{u} \sin \beta t+\mathbf{v} \cos \beta t)
\end{aligned}
$$

are linearly independent solutions of $A \mathbf{y}=\mathbf{y}^{\prime}$.

