LINEAR DIFFERENTIAL EQUATIONS

Theorem. The general solution to the homogeneous linear differential equation $y^{\prime}+p(x) y=0$ is

$$
y=c e^{-P(x)}
$$

where $P(x)$ is any antiderivative of $p(x)$ (any function so that $P^{\prime}(x)=p(x)$).
Note that applying the theorem requires that $p(x)$ be integrable; thus there are situations in which the theorem doesn't help.

1. This problem deals with the differential equation $\left(1+x^{2}\right) y^{\prime}=2 x y$.
a) Find the general solution
b) Check that your solution really works
c) Find the particular solution with $y(1)=4$.

Theorem. The general solution to the linear differential equation $y^{\prime}+p(x) y=f(x)$ is

$$
y=u y_{1}
$$

where
a) y_{1} is any particular solution to the complementary equation $y^{\prime}+p(x) y=0$
b) $u=\int \frac{f(x)}{y_{1}(x)} d x$ (add a constant here).
2. Solve the IVP: $y^{\prime}+2 x y=x, y(1)=1$.

