MODELS USING DIFFERENTIAL EQUATIONS

1. We saw that the exponential model for population growth P’ = a P predicts unbounded population sizes.
The logistic model resolves this problem: P’ = aP(1 — bP) where a and b are positive constants. If it helps
you to solve the problem, you may use a = 1 and b = 0.5.

a) Draw a phase line and use it to predict the long-term population trends.

b) Use separation of variables to find a solution P(¢). (You may need to use the method of partial fractions).

c) Calculate lim;_,, P(t) and compare with your answer for part a.
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2. Newton's law of cooling states that the rate of change of an object’s temperature is proportional to
the difference between its temperature and the temperature of its environment. As a differential equation:
T" = —k(T —T,,) where k is a positive constant of proportionality and T, is the (constant) temperature of
the environment.

a) What is the eventual temperature 7" of the object?

b) Draw a phase line for the model and verify that it agrees with your answer for part a.

c) Find the general solution to the differential equation.

3 (CSI Gonzaga). A body is found outside on a 5°C day. At 12:15 its temperature is 35°C and at 12:45 its
temperature is 33°C.

a) Use the two points to find a formula for T'(¢), the temperature of the body ¢ hours after 12:15.

b) Human body temperature is 37°C. Use this to find the time the body started cooling.

Bonus. A 10kg object is launched upward with initial velocity 60 m/s. The atmosphere resists the object’s
motion with a force of 5 N for each m/s of speed. Assume that the only other force acting on the object is
gravity (the acceleration of which is 9.8 m/s* downward). Easier: find the terminal velocity of the object.
Harder: Find a formula for the velocity of the object.



