Theorem. If y_{p} is any solution to the differential equation

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x) \tag{1}
\end{equation*}
$$

and $\left\{y_{1}, y_{2}\right\}$ is a fundamental set of solutions to the complementary equation $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$, then a general solution for differential equation 1 is

$$
y=y_{p}+c_{1} y_{1}+c_{2} y_{2}
$$

1. Consider the differential equation $y^{\prime \prime}-7 y^{\prime}+12 y=4 e^{2 x}$.
a) Find a constant A such that $y_{p}=A e^{2 x}$ is a solution of the differential equation.
b) Find a general solution for the differential equation.
2. Consider the differential equation $y^{\prime \prime}-7 y^{\prime}+12 y=5 e^{4 x}$.
a) Why can't you find a constant A such that $y_{p}=A e^{4 x}$ is a solution for the differential equation?
b) Find a constant B such that $B x e^{4 x}$ is a solution for the differential equation.
c) Find a general solution for the differential equation.

Theorem (Superposition). If $y_{p_{1}}$ is a particular solution of $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f_{1}(x)$ and $y_{p_{2}}$ is a particular solution of $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f_{2}(x)$, then a particular solution of

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f_{1}(x)+f_{2}(x)
$$

is

$$
y_{p}=y_{p_{1}}+y_{p_{2}}
$$

3. Use the principle of superposition to find a general solution to the differential equation $y^{\prime \prime}-7 y^{\prime}+12 y=5 e^{4 x}+4 e^{2 x}$.
4. Consider the differential equation $y^{\prime \prime}-8 y^{\prime}+16 y=2 e^{4 x}$.
a) Why can't you find a constant A such that $y_{p}=A e^{4 x}$ is a solution of the differential equation?
b) Why can't you find a constant B such that $B x e^{4 x}$ is a solution of the differential equation?
c) Find a constant C such that $C x^{2} e^{4 x}$ is a solution of the differential equation.
d) Find a general solution for the differential equation.
