Method. To find a solution y_{p} to the differential equation $a y^{\prime \prime}+b y^{\prime}+c y=P(x)$ where $P(x)$ is a polynomial of degree n (and $c \neq 0$): set $y_{p}=A_{n} x^{n}+A_{n-1} x^{n-1}+\cdots+A_{0}$ and solve for the undetermined coefficients $A_{0}, A_{1}, \ldots, A_{n}$.

1. Find a general solution to $y^{\prime \prime}-2 y^{\prime}+y=x-3$.

Method. To find a solution y_{p} to the differential equation $a y^{\prime \prime}+b y^{\prime}+c y=k e^{\alpha x}$: set y_{p} equal to the first of the following that is not a solution to the complementary equation and solve for the undetermined coefficients.

1. $y_{p}=A e^{\alpha x}$
2. $y_{p}=A x e^{\alpha x}$
3. $y_{p}=A x^{2} e^{\alpha x}$
4. Find a general solution to $y^{\prime \prime}-3 y^{\prime}+2 y=e^{x}$.

Method. To find a solution y_{p} to the differential equation $a y^{\prime \prime}+b y^{\prime}+c y=p \cos (\omega x)+q \sin (\omega x)$: set y_{p} equal to the first of the following that is not a solution to the complementary equation and solve for the undetermined coefficients.

1. $y_{p}=A \cos (\omega x)+B \sin (\omega x)$
2. $y_{p}=A x \cos (\omega x)+B x \sin (\omega x)$
3. A spring system with negligible friction and cyclic external force satisfies the differential equation $y^{\prime \prime}+y=8 \cos t$. Solve the IVP if $y(0)=0$ and $y^{\prime}(0)=0$.
