Method (Power series solutions for $\left.P_{0}(x) y^{\prime \prime}+P_{1}(x) y^{\prime}+P_{2}(x) y=0\right)$. If $P_{0}\left(x_{0}\right) \neq 0$, then we'll say that x_{0} is an ordinary point of the differential equation. We seek a power series solution centered at x_{0} :

$$
y=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+a_{3}\left(x-x_{0}\right)^{3}+\ldots
$$

Using these in our differential equation gives recursive formulas for the coefficients. Note that $y\left(x_{0}\right)=a_{0}$ and $y^{\prime}\left(x_{0}\right)=a_{1}$. Thus, inital values for $y\left(x_{0}\right)$ and $y^{\prime}\left(x_{0}\right)$ allow us to find values for all the coefficients.

Comment. The method works at any ordinary point, but we'll usually work with $x_{0}=0$.

1. Using $x_{0}=0$, write out power series for y, y^{\prime}, and $y^{\prime \prime}$. Either use sigma notation or expand each series to the x^{3} term.

When you're finished with (or stuck on) problem 1, watch the video example.
2. Find the first 4 coefficients of a series solution to the IVP $\left(1+x^{2}\right) y^{\prime \prime}+6 x y^{\prime}+6 y=0, y(0)=-1$ and $y^{\prime}(0)=1$.
3. Find the first 4 coefficients of a series solution to the IVP $\left(1+8 x^{2}\right) y^{\prime \prime}+2 y^{\prime}=0, y(0)=2$ and $y^{\prime}(0)=-1$.

