Video 1. Start with the video introducing Laplace transforms.

1. Find the Laplace transform of $f(t)=1$
2. Find the Laplace transform of $f(t)=e^{2 t}$
3. Find the Laplace transform of $f(t)=1+2 t+3 e^{2 t}$

Video 2. Watch the next video once you're stuck or done.

Theorem (Linearity Property). Let $c_{1}, c_{2}, \ldots, c_{n}$ be constants and let $f_{1}, f_{2}, \ldots, f_{n}$ be functions. Suppose the Laplace transform $L\left(f_{i}\right)$ is defined for $s>s_{i}$ for each i and let s_{0} be the largest of $s_{1}, s_{2}, \ldots, s_{n}$. Then

$$
L\left(c_{1} f_{1}+c_{2} f_{2}+\cdots+c_{n} f_{n}\right)=c_{1} L\left(f_{1}\right)+c_{2} L\left(f_{2}\right)+\cdots+c_{n} L\left(f_{n}\right) \text { for } s>s_{0}
$$

Theorem (First Shifting Theorem). If $L(f(t))=F(s)$ for $s>s_{0}$, then

$$
L\left(e^{a t} f(t)\right)=F(s-a) \text { for } s>s_{0}+a
$$

Method. Work out a few basic Laplace transforms (see the table on page 399) and use linearity and shifting to find Laplace transforms of more complicated functions without integrating anything.

Examples.

$$
L\left(7 t e^{-t}-3\right)=7 L\left(t e^{-t}\right)-3 L(1)=7\left(\frac{1}{s+1}\right)-3\left(\frac{1}{s}\right) \text { for } s>0
$$

4. Find the Laplace transform of $\sinh (b t)=\frac{e^{b t}-e^{-b t}}{2}$
