Math 260 Solving IVPs using Laplace transforms Due: March 20, 2020

Video 1. Start with the video (it's a long one-use the speed controls to get through the parts you think are slow).

Theorem. Suppose f and f' are continuous on $[0, \infty)$ and of exponential order s_0 , and that f'' is piecewise continuous on $[0, \infty)$. Then f, f', and f'' have Laplace transforms for $s > s_0$:

$$L(f') = sL(f) - f(0)$$
 and $L(f'') = s^2L(f) - sf(0) - f'(0)$

Method. How to use Laplace transforms to solve and IVP:

- 1. Take the Laplace transform of the differential equation
- 2. Use the initial conditions
- 3. Solve for Y = L(y) (do as little algebra as possible)
- 4. Take the inverse Laplace transform to find y
- 1. Use Laplace transforms to solve the following IVPs:

a)
$$y'' + y' - 2y = 2e^{3t}$$
, $y(0) = -1$, $y'(0) = 4$

b) y'' - 4y' + 4y = 1, y(0) = 0, y'(0) = 1 (be careful with the partial fractions decomposition in this one)