Video 1. Start with the video (it's a long one-use the speed controls to get through the parts you think are slow).

Theorem. Suppose f and f^{\prime} are continuous on $[0, \infty)$ and of exponential order s_{0}, and that $f^{\prime \prime}$ is piecewise continuous on $[0, \infty)$. Then f, f^{\prime}, and $f^{\prime \prime}$ have Laplace trannsforms for $s>s_{0}$:

$$
L\left(f^{\prime}\right)=s L(f)-f(0) \text { and } L\left(f^{\prime \prime}\right)=s^{2} L(f)-s f(0)-f^{\prime}(0)
$$

Method. How to use Laplace transforms to solve and IVP:

1. Take the Laplace transform of the differential equation
2. Use the initial conditions
3. Solve for $Y=L(y)$ (do as little algebra as possible)
4. Take the inverse Laplace transform to find y
5. Use Laplace transforms to solve the following IVPs:
a) $y^{\prime \prime}+y^{\prime}-2 y=2 e^{3 t}, y(0)=-1, y^{\prime}(0)=4$
b) $y^{\prime \prime}-4 y^{\prime}+4 y=1, y(0)=0, y^{\prime}(0)=1$ (be careful with the partial fractions decomposition in this one)
