Video 1. Watch the video on the unit step function and its Laplace transform.
Definition. The unit step function is $u(t)= \begin{cases}0 & \text { if } t<0 \\ 1 & \text { if } t \geq 0\end{cases}$
Method. The piecewise function $f(t)=\left\{\begin{array}{ll}g(t) & \text { if } t<t_{1} \\ h(t) & \text { if } t \geq t_{1}\end{array}\right.$ can be expressed as

$$
f(t)=g(t)+u\left(t-t_{1}\right)[h(t)-g(t)]
$$

Theorem. If $t_{1} \geq 0$ and $L\left(g\left(t+t_{1}\right)\right)$ exists for $s>s_{0}$, then $L\left(u\left(t-t_{1}\right) g(t)\right)=e^{-s t_{1}} L\left(g\left(t+t_{1}\right)\right)$ for $s>s_{0}$.

1. Find the Laplace transforms of the following functions by first re-expressing them using the unit step function the applying the theorem above.
a) $f(t)= \begin{cases}1 & \text { if } t<2 \\ t & \text { if } t \geq 2\end{cases}$
b) $f(t)= \begin{cases}e^{t} & \text { if } t<\ln (2) \\ e^{-t} & \text { if } t \geq \ln (2)\end{cases}$

Video 2. Watch the video on the second shifting theorem.
Theorem (Second shifting theorem). $e^{-s t_{1}} L(g(t))=L\left(u\left(t-t_{1}\right) g\left(t-t_{1}\right)\right)$
2. Use the second shifting theorem to fin the inverse Laplace transforms of the following functions.
a) $H(s)=\frac{e^{-s}}{s-2}$. Hint: $\frac{1}{s-2}=L\left(e^{2 t}\right)$.
b) $H(s)=\frac{1}{s}+\frac{e^{-3 s}}{s^{2}}$
3. Use Laplace transforms to solve the IVP: $y^{\prime \prime}-2 y^{\prime}=\left\{\begin{array}{ll}4, & 0 \leq t<1 \\ 6, & t \geq 1\end{array}, y(0)=-6, y^{\prime}(0)=1\right.$.
a) Take the Laplace transform of the entire differential equation (using $L\left(y^{\prime \prime}\right)=s^{2} L(y)-s y(0)-y^{\prime}(0)$ and $\left.L\left(y^{\prime}\right)=s L(y)-y(0)\right)$.
b) Sub in the initial conditions and solve for $Y=L(y)$.
c) Take the inverse Laplace transform to get the solution $y(t)=L^{-1}(Y)$.

