Math 260 Laplace and the Piecewise Continuous Forcing Function

Video 1. Watch the video on the unit step function and its Laplace transform.

Definition. The unit step function is $u(t) = \begin{cases} 0 & \text{if } t < 0 \\ 1 & \text{if } t \ge 0 \end{cases}$

Method. The piecewise function $f(t) = \begin{cases} g(t) & \text{ if } t < t_1 \\ h(t) & \text{ if } t \geq t_1 \end{cases}$ can be expressed as

$$f(t) = g(t) + u(t - t_1) [h(t) - g(t)]$$

Theorem. If $t_1 \ge 0$ and $L(g(t+t_1))$ exists for $s > s_0$, then $L(u(t-t_1)g(t)) = e^{-st_1}L(g(t+t_1))$ for $s > s_0$.

1. Find the Laplace transforms of the following functions by first re-expressing them using the unit step function the applying the theorem above.

a)
$$f(t) = \begin{cases} 1 & \text{if } t < 2 \\ t & \text{if } t \ge 2 \end{cases}$$

b)
$$f(t) = \begin{cases} e^t & \text{if } t < \ln(2) \\ e^{-t} & \text{if } t \ge \ln(2) \end{cases}$$

Video 2. Watch the video on the second shifting theorem.

Theorem (Second shifting theorem). $e^{-st_1}L(g(t)) = L(u(t-t_1)g(t-t_1))$

2. Use the second shifting theorem to fin the inverse Laplace transforms of the following functions.

a)
$$H(s) = \frac{e^{-s}}{s-2}$$
. Hint: $\frac{1}{s-2} = L(e^{2t})$.

b)
$$H(s) = \frac{1}{s} + \frac{e^{-3s}}{s^2}$$

- **3.** Use Laplace transforms to solve the IVP: $y'' 2y' = \begin{cases} 4, & 0 \le t < 1 \\ 6, & t \ge 1 \end{cases}$, y(0) = -6, y'(0) = 1.
- a) Take the Laplace transform of the entire differential equation (using $L(y'') = s^2 L(y) sy(0) y'(0)$ and L(y') = sL(y) y(0)).
- b) Sub in the initial conditions and solve for Y = L(y).
- c) Take the inverse Laplace transform to get the solution $y(t) = L^{-1}(Y)$.