Video 1. Watch the introction to linear systems of differential equations.

1. Rewrite the system in matrix form and verify that the given vector function is a solution.
a)

$$
\begin{gathered}
y_{1}^{\prime}=-4 y_{1}-10 y_{2} \\
y_{2}^{\prime}=3 y_{1}+7 y_{2} \\
\mathbf{y}=\left[\begin{array}{c}
-5 \\
3
\end{array}\right] e^{2 t}+\left[\begin{array}{c}
2 \\
-1
\end{array}\right] e^{t}
\end{gathered}
$$

b)

$$
\begin{aligned}
& y_{1}^{\prime}=-y_{1}+2 y_{2}+3 y_{3} \\
& y_{2}^{\prime}=y_{2}+6 y_{3} \\
& y_{3}^{\prime}=-2 y_{3}
\end{aligned}
$$

$$
\mathbf{y}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] e^{t}+\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] e^{-t}+\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] e^{-2 t}
$$

Definition. Matrix multiplication: $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{cc}x & y \\ z & w\end{array}\right]=\left[\begin{array}{ll}a x+b z & a y+b w \\ c x+d z & c y+d w\end{array}\right]$
2. Verify that $Y^{\prime}=A Y$ for $Y=\left[\begin{array}{cc}e^{6 t} & e^{-2 t} \\ e^{6 t} & -e^{-2 t}\end{array}\right]$ and $A=\left[\begin{array}{ll}2 & 4 \\ 4 & 2\end{array}\right]$.

