Video 1. Watch the lesson on solving linear systems of differential equations.

1. Solve the IVP $\mathbf{y}^{\prime}=\left[\begin{array}{cc}2 & -4 \\ -1 & -1\end{array}\right] \mathbf{y}, \mathbf{y}(0)=\left[\begin{array}{c}2 \\ -3\end{array}\right]$.
2. Find the general solution to $\mathbf{y}^{\prime}=\left[\begin{array}{cc}3 & 4 \\ -1 & 7\end{array}\right] \mathbf{y}$.
3. Find the general solution to $\mathbf{y}^{\prime}=\left[\begin{array}{cc}1 & 2 \\ -4 & 5\end{array}\right] \mathbf{y}$.

Video 2. Watch another video on phase planes and describing the solutions.
4. Characterize each system above as a source, a sink, a saddle, a spiral source, a spiral sink, an ellipse, or none of the above.

The following problems are optional, but encouraged

Sometimes a small change in a parameter in an ODE can have a big effect on the behavior of the solutions. This is called a bifurcation event (and is a key feature of chaotic systems). We will study the bifurcations that occur in the system

$$
\mathbf{y}^{\prime}=\left[\begin{array}{cc}
\alpha & 1 \\
-4 & 0
\end{array}\right] \mathbf{y}
$$

5. Download and run pplane.jar. Set the Display Window so that both x and y range between -2 and 2 . Graph the phase plane for $\alpha=-5, \alpha=0, \alpha=2, \alpha=4$, and $\alpha=8$. (Hint: for $\alpha=8$ you'll need to enter the system of equations $x^{\prime}=8 x+y$ and $y^{\prime}=-4 x$). Compare and contrast the phase plane graphs.
6. Find the eigenvalues of $\left[\begin{array}{cc}\alpha & 1 \\ -4 & 0\end{array}\right]$ as a function of α (use the quadratic formula).
a) For what values of α does the matrix have distinct real eigenvalues?
b) For what values of α does the matrix have repeated real eigenvalues?
c) For what values of α does the matrix have imaginary eigenvalues?
7. Choose any value of α you want and solve the IVP (note that solutions are hard to find for some choices of α):

$$
\mathbf{y}^{\prime}=\left[\begin{array}{cc}
\alpha & 1 \\
-4 & 0
\end{array}\right] \mathbf{y}, \mathbf{y}(0)=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

8. Use pplane.jar to plot the solution to your IVP by entering your choice of of α and selecting "Keyboard Input of Initial Value" from the Solution menu and entering $x=1$ and $y=0$. Sketch the graph along with dashed lines for the eigenvector(s) of the matrix (if real-valued).
9. Check the "Use current initial values in new graph" box at the bottom left of the equation window of pplane.jar and then graph the phase plane for $\alpha=-5, \alpha=0, \alpha=2, \alpha=4$, and $\alpha=8$ (this time you should see the graph of the solution to the IVP in addition to the arrows). Compare these graphs with your (and admire the spirals).
