LINEAR DIFFERENTIAL EQUATIONS

$\mathbf{1}$ (Completion). We think that the general solution to the differential equation $y^{\prime}+\left(\frac{3}{x}\right) y=x$ is $y=\frac{x^{2}}{5}+\frac{c}{x^{3}}$.
a) Check that this solution actually works (by differentiating and substituting)
b) Solve the IVP: $y^{\prime}+\left(\frac{3}{x}\right) y=x, y(1)=2$

Theorem. The general solution to the homogeneous linear differential equation $y^{\prime}+p(x) y=0$ is

$$
y=c e^{-P(x)}
$$

where $P(x)$ is an antiderivative of $p(x)$ (any function so that $P^{\prime}(x)=p(x)$; alternatively, $\left.P(x)=\int p(x) d x\right)$. Note that the theorem requires that $p(x)$ be integrable.
Theorem. The general solution to the linear differential equation $y^{\prime}+p(x) y=f(x)$ is

$$
y=u y_{1}
$$

where
a) y_{1} is any particular solution to the complementary equation $y^{\prime}+p(x) y=0$
b) $u=\int \frac{f(x)}{y_{1}(x)} d x$ (add a constant here).

Method. To solve a linear differential equation:
0 . Determine that it is linear by rewriting as $y^{\prime}+p(x) y=f(x)$

1. Solve the complementary equation $y^{\prime}+p(x) y=0$ and choose a solution to be y_{1}
2. Find $u=\int \frac{f(x)}{y_{1}(x)} d x$
3. Your solution is $y=u y_{1}$ (check by differentiating and substituting)

2 (Graded). Solve the IVP: $y^{\prime}+2 x y=x, y(1)=1$

3 (Completion). Solve the IVP: $(1+x) y^{\prime}+2 y=\frac{\sin x}{1+x}, y(0)=1$

