LINEAR DIFFERENTIAL EQUATIONS

1 (Completion). We think that the general solution to the differential equation $y' + \left(\frac{3}{x}\right)y = x$ is $y = \frac{x^2}{5} + \frac{c}{r^3}$.

- a) Check that this solution actually works (by differentiating and substituting)
- b) Solve the IVP: $y' + \left(\frac{3}{x}\right)y = x$, y(1) = 2

Theorem. The general solution to the homogeneous linear differential equation y' + p(x)y = 0 is

$$y = ce^{-P(x)}$$

where P(x) is an antiderivative of p(x) (any function so that P'(x) = p(x); alternatively, $P(x) = \int p(x) dx$). Note that the theorem requires that p(x) be integrable.

Theorem. The general solution to the linear differential equation y' + p(x)y = f(x) is

$$y = uy_1$$

where

a) y_1 is any particular solution to the complementary equation y' + p(x)y = 0b) $u = \int \frac{f(x)}{y_1(x)} dx$ (add a constant here).

Method. To solve a linear differential equation:

- 0. Determine that it is linear by rewriting as y' + p(x)y = f(x)
- 1. Solve the complementary equation y' + p(x)y = 0 and choose a solution to be y_1
- 2. Find $u = \int \frac{f(x)}{y_1(x)} dx$
- 3. Your solution is $y = uy_1$ (check by differentiating and substituting)

Date: January 27, 2021.

2 (Graded). Solve the IVP: y' + 2xy = x, y(1) = 1

3 (Completion). Solve the IVP: $(1+x)y' + 2y = \frac{\sin x}{1+x}$, y(0) = 1