MODELS USING DIFFERENTIAL EQUATIONS

1 (Graded). We saw that the exponential model for population growth P’ = aP predicts unbouqd'ed
population sizes. The logistic model resolves this problem: P’ = aP(1 — bP) where a and b are positive
constants. If it helps you to solve the problem, you may use a = 1 and b = 0.5. ’ ?’

a) Draw a phase line and use it to predict the long-term population trends. -
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b) Use separation of variables to find a solution P(t). (I recommend using partial fractions in the integral;
you'll also need to use laws of logarithms to solve for P). -
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c) Calculate lim;_,., P(t) and compare with your answer for part a.
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2 (Completion). Newton's law of cooling states that the rate of change of an object’s temperature is pro-

portional to the difference between its temperature and the temperature of its environment. As a differential

equation: 7' = —k(T — Tr) where k is a positive constant of proportionality and 75, is the (constant)

temperature of the environment.

a) What is the eventual temperature T of the object? Use your understanding of cooling (or heating) to
answer (not math).

b) Draw a phase line for the model and verify that it agrees with your answer for part a.

c) Find the general solution to the differential equation.
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3 (Corppletic:n). A cup of boiling_water (212° F) is placed outside. One minute later the temperature of the
water is 152° F. After another minute the temperature is 112° F. What is the outside temperature?
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4 (Graded). An object with a mass of m = 10 kg is launched upward with initial velocity of vo = 60 m/s.
The atmosphere resists the object's motion with a force of 5 Ns/m (that's 5 Newtons for each m/s of speed).
The only other force acting on the object is gravity (the acceleration of which is g = 9.8 m/s? downvyafd)-
This means that the total force on the object is F = —mg — 5v. Newton tells us that F' = ma = mv.. We

now have a differential equation (in the variable v): ’mv’ = —mg — 5'UJ

a) Find the terminal velocity of the object (the equilibrium solution to the equation).
b) Find a formula for the velocity of the object. '
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