MODELS USING DIFFERENTIAL EQUATIONS
1 (Graded). We saw that the exponential model for population growth $P^{\prime}=a P$ predicts unbounded population sizes. The logistic model resolves this problem: $P^{\prime}=a P(1-b P)$ where a and b are positive constants. If it helps you to solve the problem, you may use $a=1$ and $b=0.5$.
a) Draw a phase line and use it to predict the long-term population trends.

Use $p^{\prime}=p(1-0.5 p)$

$$
0=p^{\prime}=p(1-0.5 p) \text { e } p=0, p=2
$$

Pop should approach 2.

b) Use separation of variables to find a solution $P(t)$. (I recommend using partial fractions in the integral; you'll also need to use laws of logarithms to solve for P).

$$
\frac{1}{P(1-0.5 P)}=\frac{1}{P}+\frac{0.5}{1-0.5 P}
$$

(partial fractions)

$$
\begin{aligned}
\frac{1}{P(1-0.5 p)} P^{\prime} & =1 \text { and } \\
\int \frac{1}{p}+\frac{0.5}{1-0.5 p} d p & =\int 1 d t
\end{aligned}
$$

$$
\ln |P|-\ln |1-0.5 p|=t+c
$$

$$
\ln \left|\frac{p}{1-0.5 p}\right|=t+c
$$

$$
\begin{aligned}
& \frac{p}{1-0.5 p}=c e^{t} \\
& p=c e^{t}-\frac{c}{2} p e^{t}
\end{aligned}
$$

c) Calculate $\lim _{t \rightarrow \infty} P(t)$ and compare with your answer for part a.

$$
\lim _{t \rightarrow \infty} P(t)=\lim _{t \rightarrow \infty} \frac{2}{\left(\frac{2}{\left(e^{t}\right)}+1\right.}=2
$$

2 (Completion). Newton's law of cooling states that the rate of change of an object's temperature is proportional to the difference between its temperature and the temperature of its environment. As a differential equation: $T^{\prime}=-k\left(T-T_{m}\right)$ where k is a positive constant of proportionality and T_{m} is the (constant) temperature of the environment.
a) What is the eventual temperature T of the object? Use your understanding of cooling (or heating) to answer (not math).
b) Draw a phase line for the model and verify that it agrees with your answer for part a.
c) Find the general solution to the differential equation.
a) I think the object will exatually end up at T_{M}

$$
\text { b) } T_{m}{ }^{-}+
$$

c) $T^{\prime}+k T=k T m$ (liner form)
or $\frac{1}{T-T_{m}} T^{\prime}=-k$ (seperated)
Solution: $T=T_{m}+\left(e^{-k t}\right.$
3.

$$
\begin{align*}
& \begin{array}{l}
212=T(0)=T m+C \\
152=T(1)=T m+C e^{-k} \quad 60=C-C e^{-k}=c\left(1-e^{-k}\right)
\end{array} \tag{1}\\
& 112=T(2)=T_{m}+C e^{-2 k} \quad-40=c e^{-k}-\left(e^{-2 k}\right. \\
& \begin{array}{l}
=e^{-k}\left[c\left(1-e^{-k}\right)\right]^{e}
\end{array}
\end{align*}
$$

3 (Completion). A cup of boiling water ($212^{\circ} \mathrm{F}$) is placed outside. One minute later the temperature of the water is $152^{\circ} \mathrm{F}$. After another minute the temperature is $112^{\circ} \mathrm{F}$. What is the outside temperature?
Continued from above:

$$
40=e^{-k}(60) \text { thus } e^{-k}=\frac{2}{3}
$$

sub back in to (1) to set $60=C\left(1-\frac{2}{3}\right)$.
Thus $C=100$.
Now $212=T_{m+c}=T_{m}+100$.
Therefore $T_{m}=32^{\circ}$

4 (Graded). An object with a mass of $m=10 \mathrm{~kg}$ is launched upward with initial velocity of $v_{0}=60 \mathrm{~m} / \mathrm{s}$. The atmosphere resists the object's motion with a force of $5 \mathrm{Ns} / \mathrm{m}$ (that's 5 Newtons for each m / s of speed). The only other force acting on the object is gravity (the acceleration of which is $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ downward). This means that the total force on the object is $F=-m g-5 v$. Newton tells us that $F=m a=m v^{\prime}$. We now have a differential equation (in the variable v): $m v^{\prime}=-m g-5 v$
a) Find the terminal velocity of the object (the equilibrium solution to the equation).
b) Find a formula for the velocity of the object.
a)

$$
\begin{aligned}
v^{\prime}=-g-\frac{5}{m} v & =0 \\
-\frac{5}{m} v & =g \\
v=-\frac{m g}{5} & =-\frac{10}{5} 9.8=-196 \frac{\mathrm{~m}}{\mathrm{~s}} \\
\frac{\mathrm{~kg} / \mathrm{m} / \mathrm{si})}{(\mathrm{ms} / \mathrm{m})} & =\frac{\mathrm{m}}{5}
\end{aligned}
$$

b) $V^{\prime}+\frac{1}{2} V=-9.8 \quad$ (linear)
comp eq: $v^{\prime}+\frac{1}{2} v=0$ hes solution $v_{1}=e^{-\frac{1}{2} t}$

$$
u=\int \frac{-9.3}{e^{-t / 2}} d t=\int-9.8 e^{t / 2} d t=-19.6 e^{t / 2}+C
$$

General solution: $v=U v_{1}=\left(-19.6 e^{t / 2}+c\right) e^{-t / 2}$

$$
v=-19.6+c e^{-t / 2}
$$

Use initial value: $60: v(0)=-19.6+C$

$$
\begin{array}{r}
c=79.6 \\
V(t)=-19.6+79.6 e^{-t / 2}
\end{array}
$$

