MODELS USING DIFFERENTIAL EQUATIONS

1 (Graded). We saw that the exponential model for population growth $P^{\prime}=a P$ predicts unbounded population sizes. The logistic model resolves this problem: $P^{\prime}=a P(1-b P)$ where a and b are positive constants. If it helps you to solve the problem, you may use $a=1$ and $b=0.5$.
a) Draw a phase line and use it to predict the long-term population trends.
b) Use separation of variables to find a solution $P(t)$. (I recommend using partial fractions in the integral; you'll also need to use laws of logarithms to solve for P).
c) Calculate $\lim _{t \rightarrow \infty} P(t)$ and compare with your answer for part a.

2 (Completion). Newton's law of cooling states that the rate of change of an object's temperature is proportional to the difference between its temperature and the temperature of its environment. As a differential equation: $T^{\prime}=-k\left(T-T_{m}\right)$ where k is a positive constant of proportionality and T_{m} is the (constant) temperature of the environment.
a) What is the eventual temperature T of the object? Use your understanding of cooling (or heating) to answer (not math).
b) Draw a phase line for the model and verify that it agrees with your answer for part a.
c) Find the general solution to the differential equation.

3 (Completion). A cup of boiling water $\left(212^{\circ} \mathrm{F}\right)$ is placed outside. One minute later the temperature of the water is $152^{\circ} \mathrm{F}$. After another minute the temperature is $112^{\circ} \mathrm{F}$. What is the outside temperature?

4 (Graded). An object with a mass of $m=10 \mathrm{~kg}$ is launched upward with initial velocity of $v_{0}=60 \mathrm{~m} / \mathrm{s}$. The atmosphere resists the object's motion with a force of $5 \mathrm{Ns} / \mathrm{m}$ (that's 5 Newtons for each m / s of speed). The only other force acting on the object is gravity (the acceleration of which is $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ downward). This means that the total force on the object is $F=-m g-5 v$. Newton tells us that $F=m a=m v^{\prime}$. We now have a differential equation (in the variable v): $m v^{\prime}=-m g-5 v$
a) Find the terminal velocity of the object (the equilibrium solution to the equation).
b) Find a formula for the velocity of the object.

