## HOMOGENEOUS, LINEAR, SECOND-ORDER EQUATIONS

Definition. The characteristic polynomial of the differential equation $a y^{\prime \prime}+b y^{\prime}+c y=0$ is $a r^{2}+b r+c$ and the characteristic equation is $a r^{2}+b r+c=0$.
Theorem. If the characteristic polynomial of $a y^{\prime \prime}+b y^{\prime}+c y=0$ has...
a) $\ldots$ distinct real roots $r_{1}$ and $r_{2}$, then a general solution is $y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$
b) ...a single (repeated) real root $r$, then a general solution is $y=e^{r t}\left(c_{1}+c_{2} t\right)$
c) ...complex roots $\lambda \pm i \omega($ where $\omega>0)$, then a general solution is $y=e^{\lambda t}\left(c_{1} \cos \omega t+c_{2} \sin \omega t\right)$

1 (Graded). Solve the IVP: $y^{\prime \prime}-2 y^{\prime}+y=0, y(0)=2, y^{\prime}(0)=-1$.

2 (Graded). Solve the IVP: $6 y^{\prime \prime}-y^{\prime}-y=0, y(0)=-1, y^{\prime}(0)=3$.

3 (Completion). An object stretches a spring 0.5 feet at equilibrium. You then compress the spring 4 inches and release it with an initial velocity of $1.5 \mathrm{ft} / \mathrm{sec}$. There's no damping. Your goal is to find a formula for the motion of the spring.
a) Use the equilibrium information $(-m g+\Delta l k=0)$ to solve for $k / m$. Note that you won't be able to solve for $k$ or $m$ individually (and you don't need to).
b) Use your value for $k / m$ to find a general solution to the differential equation $m y^{\prime \prime}+k y=0$.
c) Use the two initial conditions (for $y(0)$ and $\left.y^{\prime}(0)\right)$ to find the values of the two constants.

The general solution to the undamped spring system $m y^{\prime \prime}+k y=0$ is $y=c_{1} \cos \left(\sqrt{\frac{k}{m}} t\right)+c_{2} \sin \left(\sqrt{\frac{k}{m}} t\right)$. Most of the world prefers to express undamped oscillation as $y=R \cos \left(\omega_{0} t-\phi\right)$ where

- $\omega_{0}=\sqrt{\frac{k}{m}}$
- $R=\sqrt{c_{1}^{2}+c_{2}^{2}}$
- $\phi$ is an angle such that $c_{1}=R \cos (\phi)$ and $c_{2}=R \sin (\phi)$

4 (Completion). Express your solution to the last problem in the form $y=R \cos \left(\omega_{0} t-\phi\right)$ (that is, find the values of $R$, $\omega_{0}$, and $\phi$ for your solution).

