UNDETERMINED COEFFICIENTS

Theorem. If y_p is any solution to the differential equation y'' + p(x)y' + q(x)y = f(x) and $\{y_1, y_2\}$ is a fundamental set of solutions to the complementary equation y'' + p(x)y' + q(x)y = 0, then a general solution for the original differential equation is

$$y = y_p + c_1 y_1 + c_2 y_2$$

Theorem (Superposition). If y_{p_1} is a particular solution of $y'' + p(x)y' + q(x)y = f_1(x)$ and y_{p_2} is a particular solution of $y'' + p(x)y' + q(x)y = f_2(x)$, then a particular solution of

$$y'' + p(x)y' + q(x)y = f_1(x) + f_2(x)$$

is

$$y_p = y_{p_1} + y_{p_2}$$

Method. To find a solution y_p to the differential equation ay'' + by' + cy = P(x) where P(x) is a polynomial of degree n (and $c \neq 0$): set $y_p = A_n x^n + A_{n-1} x^{n-1} + \cdots + A_0$ and solve for the undetermined coefficients A_0, A_1, \ldots, A_n .

Example. Solve the IVP y'' + 2y' + y = t - 3, y(0) = 1, y'(0) = -1.

Method. To find a solution y_p to the differential equation $ay'' + by' + cy = ke^{\alpha x}$: set y_p equal to the first of the following that is not a solution to the complementary equation and solve for the undetermined coefficients.

- (1) $y_p = Ae^{\alpha x}$
- (2) $y_p = Axe^{\alpha x}$
- (3) $y_p = Ax^2 e^{\alpha x}$

1 (Completion). Solve the IVP $y'' + 3y' + 2y = e^{-t}$, y(0) = 1, y'(0) = -1.

Method. To find a solution y_p to the differential equation $ay'' + by' + cy = p\cos(\omega x) + q\sin(\omega x)$: set y_p equal to the first of the following that is not a solution to the complementary equation and solve for the undetermined coefficients.

(1) $y_p = A\cos(\omega x) + B\sin(\omega x)$ (2) $y_p = Ax\cos(\omega x) + Bx\sin(\omega x)$

2 (Graded). Solve the IVP $y'' + y = \frac{1}{3}\cos t$, y(0) = 0, y'(0) = 0.

3 (Graded). Find a particular solution to $y^{\prime\prime}+y=\frac{1}{3}\cos(2t)$

Date: March 3, 2021.