UNDETERMINED COEFFICIENTS

Theorem. If y_{p} is any solution to the differential equation $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)$ and $\left\{y_{1}, y_{2}\right\}$ is a fundamental set of solutions to the complementary equation $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$, then a general solution for the original differential equation is

$$
y=y_{p}+c_{1} y_{1}+c_{2} y_{2}
$$

Theorem (Superposition). If $y_{p_{1}}$ is a particular solution of $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f_{1}(x)$ and $y_{p_{2}}$ is a particular solution of $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f_{2}(x)$, then a particular solution of

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f_{1}(x)+f_{2}(x)
$$

is

$$
y_{p}=y_{p_{1}}+y_{p_{2}}
$$

Method. To find a solution y_{p} to the differential equation $a y^{\prime \prime}+b y^{\prime}+c y=P(x)$ where $P(x)$ is a polynomial of degree n (and $c \neq 0)$: set $y_{p}=A_{n} x^{n}+A_{n-1} x^{n-1}+\cdots+A_{0}$ and solve for the undetermined coefficients $A_{0}, A_{1}, \ldots, A_{n}$.
Example. Solve the IVP $y^{\prime \prime}+2 y^{\prime}+y=t-3, y(0)=1, y^{\prime}(0)=-1$.

Method. To find a solution y_{p} to the differential equation $a y^{\prime \prime}+b y^{\prime}+c y=k e^{\alpha x}$: set y_{p} equal to the first of the following that is not a solution to the complementary equation and solve for the undetermined coefficients.
(1) $y_{p}=A e^{\alpha x}$
(2) $y_{p}=A x e^{\alpha x}$
(3) $y_{p}=A x^{2} e^{\alpha x}$

1 (Completion). Solve the IVP $y^{\prime \prime}+3 y^{\prime}+2 y=e^{-t}, y(0)=1, y^{\prime}(0)=-1$.

Method. To find a solution y_{p} to the differential equation $a y^{\prime \prime}+b y^{\prime}+c y=p \cos (\omega x)+q \sin (\omega x)$: set y_{p} equal to the first of the following that is not a solution to the complementary equation and solve for the undetermined coefficients.
(1) $y_{p}=A \cos (\omega x)+B \sin (\omega x)$
(2) $y_{p}=A x \cos (\omega x)+B x \sin (\omega x)$

2 (Graded). Solve the IVP $y^{\prime \prime}+y=\frac{1}{3} \cos t, y(0)=0, y^{\prime}(0)=0$.
3 (Graded). Find a particular solution to $y^{\prime \prime}+y=\frac{1}{3} \cos (2 t)$

