LAPLACE AND THE PIECEWISE CONTINUOUS FORCING FUNCTION

Definition. The unit step function is $u(t)= \begin{cases}0 & \text { if } t<0 \\ 1 & \text { if } t \geq 0\end{cases}$
Method. The piecewise function $f(t)=\left\{\begin{array}{ll}g(t) & \text { if } t<t_{1} \\ h(t) & \text { if } t \geq t_{1}\end{array}\right.$ can be expressed as $f(t)=g(t)+u\left(t-t_{1}\right)[h(t)-g(t)]$.
Theorem. If $t_{1} \geq 0$ and $L\left(g\left(t+t_{1}\right)\right)$ exists for $s>s_{0}$, then $L\left(u\left(t-t_{1}\right) g(t)\right)=e^{-s t_{1}} L\left(g\left(t+t_{1}\right)\right)$ for $s>s_{0}$.
1 (Completion). Find the Laplace transforms of the following functions by first re-expressing them using the unit step function the applying the theorem above.
a) $f(t)= \begin{cases}1 & \text { if } t<2 \\ t & \text { if } t \geq 2\end{cases}$
b) $f(t)= \begin{cases}e^{t} & \text { if } t<\ln (2) \\ e^{-t} & \text { if } t \geq \ln (2)\end{cases}$

Theorem (Second shifting theorem). $L^{-1}\left[e^{-s t_{1}} L(g(t))\right]=u\left(t-t_{1}\right) g\left(t-t_{1}\right)$
2 (Completion). Use the second shifting theorem to find the inverse Laplace transforms of the following functions.
a) $H(s)=\frac{e^{-s}}{s-2}$. Hint: $\frac{1}{s-2}=L\left(e^{2 t}\right)$.
b) $H(s)=\frac{1}{s}+\frac{e^{-3 s}}{s^{2}}$

3 (Graded). Use Laplace transforms to solve the IVP: $y^{\prime \prime}-2 y^{\prime}=\left\{\begin{array}{ll}4, & 0 \leq t<1 \\ 6, & t \geq 1\end{array}, y(0)=-6, y^{\prime}(0)=1\right.$.

