THE GAMMA FUNCTION

Definition. The gamma function is defined by

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} \ dx$$

- 1 (Completion). Investigate the gamma function:
- a) Find $\Gamma(1)$
- b) Use IBP $(\int u dv = uv \int v du)$ to find $\Gamma(2)$
- c) Show that for positive α , $\Gamma(\alpha+1)=\alpha\Gamma(\alpha)$ (use IBP again)

Comment. One consequence of the last fact is that for any natural number n, $\Gamma(n+1)=n!$ (where n! is the factorial: $n!=n(n-1)(n-2)\dots(3)(2)1$). Hence $\Gamma(x)$ can be thought of as a continuous version of the factorial; continuous because the function is defined for every positive real number (and some negative real numbers). For example $\Gamma(1/2)=\sqrt{\pi}$.

- **2** (Completion). Use the fact that $\Gamma(1/2)=\sqrt{\pi}$ to calculate the following:
- a) $\Gamma(3/2)$
- b) $\Gamma(-1/2)$

Date: March 29, 2021.