THE GAMMA FUNCTION

Definition. The gamma function is defined by $\Gamma(\alpha)=\int_{0}^{\infty} x^{\alpha-1} e^{-x} d x$
1 (Completion). Investigate the gamma function:
a) Find $\Gamma(1)$
b) Use IBP ($\left.\int u d v=u v-\int v d u\right)$ to find $\Gamma(2)$
c) Show that for positive $\alpha, \Gamma(\alpha+1)=\alpha \Gamma(\alpha)$ (use IBP again)

Comment. One consequence of the last fact is that for any natural number $n, \Gamma(n+1)=n$! (where n ! is the factorial: $n!=n(n-1)(n-2) \ldots(3)(2) 1)$. Hence $\Gamma(x)$ can be thought of as a continuous version of the factorial; continuous because the function is defined for every positive real number (and some negative real numbers). For example $\Gamma(1 / 2)=\sqrt{\pi}$.

2 (Completion). Use the fact that $\Gamma(1 / 2)=\sqrt{\pi}$ to calculate the following:
a) $\Gamma(3 / 2)$
b) $\Gamma(-1 / 2)$

