CONVOLUTIONS AND IMPULSES

Definition. Let f and g be functions such that if t < 0, then f(t) = 0 and g(t) = 0. The **convolution** of f and g is the function f * g defined by

$$(f * g)(t) = \int_0^t f(x)g(t - x)dx$$

Theorem (Convolution Theorem). L(f*g) = L(f)L(g)

- 1. Use the Convolution Theorem to evaluate the integral $\int_0^2 x^7 (2-x)^5 dx$ by:
- a) Identifying $h(t) = \int_0^t x^7 (t-x)^5 dx$ as the convolution of two functions f and g.
- b) Applying the Convolution Theorem to find L(h).
- c) Taking the inverse Laplace transform to find h(t).
- d) Then $\int_0^2 \tau^7 (2-\tau)^5 d\tau = h(2) = ?$

Definition. The **Dirac delta** (or **unit impulse**) function is defined to be the "function" $\delta(t)$ such that

- 1) $\delta(t) = 0$ if $t \neq 0$
- 2) $\int_{-\infty}^{\infty} \delta(t)dt = 1$

Note that there is no real number y such that $\delta(0) = y$.

Theorem. If $t_0 > 0$, then the solution to the IVP $ay'' + by' + cy = \delta(t - t_0)$, y(0) = 0, y'(0) = 0, is $y = u(t - t_0)w(t - t_0)$ where $w(t) = L^{-1}\left(\frac{1}{as^2 + bs + c}\right)$ (w is often called the **impulse response** of the system).

Method. To solve an IVP of the form $ay'' + by' + cy = f(t) + \alpha \delta(t - t_0), \ y(0) = k_0, \ y'(0) = k_1$:

- 1) Find a solution $\hat{y}(t)$ to the IVP ay'' + by' + cy = f(t), $y(0) = k_0$, $y'(0) = k_1$ (use any method);
- 2) Find the impulse response w(t) of $ay'' + by' + cy = \delta(t t_0)$, y(0) = 0, y'(0) = 0;
- 3) The solution to the original IVP is $y(t) = \hat{y}(t) + \alpha u(t t_0)w(t t_0)$.
- **2.** Use the method above to solve the IVP $y''-4y=2e^{-t}+5\delta(t-1)$, y(0)=-1, y'(0)=2.

Date: April 7, 2021.