SOLVING LINEAR SYSTEMS

Method. Let A be an 2×2 matrix. To solve the IVP $\mathbf{y}^{\prime}=A \mathbf{y}, \mathbf{y}(0)=\mathbf{b}$:
(1) Find the eigenvalues of A.
(2) Find an eigenvector for each eigenvalue.
(3) Use the theorem below to find a general solution.
(4) Use the initial condition to solve the system of equations for c_{1} and c_{2}.

Method. The eigenvalues of A are the solutions to $\operatorname{det}(A-\lambda I)=0$ (solve for λ, often using the quadratic formula). Find the eigenvector(s) corresponding to each eigenvalue λ by solving $(A-\lambda I) \mathbf{x}=0$ (sub in the eigenvalue and solve for the two entries in \mathbf{x}). In 2-dimensional systems, the solution is usually a line (the eigenspace); to find an eigenvector, just choose a non-zero value for x_{1} or x_{2} and solve for the other.
Theorem. Let A be an 2×2 matrix. To find a general solution to $\mathbf{y}^{\prime}=A \mathbf{y}$:
i) If A has distinct real eigenvalues λ_{1}, λ_{2} with associated linearly independent eigenvectors $\mathbf{x}_{1}, \mathbf{x}_{2}$, then a general solution is $\mathbf{y}(t)=c_{1} \mathbf{x}_{1} e^{\lambda_{1} t}+c_{2} \mathbf{x}_{2} e^{\lambda_{2} t}$.
ii) If A has an eigenvalue λ with multiplicity of 2 or more and with an associated eigenspace of dimension 1 and \mathbf{x} is any eigenvector, then there are infinitely many vectors \mathbf{u} such that $(A-\lambda I) \mathbf{u}=\mathbf{x}$. If \mathbf{u} is any such vector, then a general solution is $\mathbf{y}(t)=c_{1} \mathbf{x} e^{\lambda t}+c_{2}\left(\mathbf{x} t e^{\lambda t}+\mathbf{u} e^{\lambda t}\right)$.
iii) If A has a complex eigenvalue $\lambda=\alpha+i \beta$ (with $\beta \neq 0$) with associated eigenvector $\mathbf{x}=\mathbf{u}+i \mathbf{v}$, then both \mathbf{u} and \mathbf{v} are nonzero and a general solution is $\mathbf{y}(t)=c_{1} e^{\alpha t}(\mathbf{u} \cos \beta t-\mathbf{v} \sin \beta t)+c_{2} e^{\alpha t}(\mathbf{u} \sin \beta t+\mathbf{v} \cos \beta t)$.
$\mathbf{1}$ (Graded). Solve the IVP $\mathbf{y}^{\prime}=\left[\begin{array}{cc}2 & -4 \\ -1 & -1\end{array}\right] \mathbf{y}, \mathbf{y}(0)=\left[\begin{array}{c}2 \\ -3\end{array}\right]$.

2 (Completion). Find the general solution to $\mathbf{y}^{\prime}=\left[\begin{array}{cc}3 & 4 \\ -1 & 7\end{array}\right] \mathbf{y}$.

3 (Completion). Find the general solution to $\mathbf{y}^{\prime}=\left[\begin{array}{cc}1 & 2 \\ -4 & 5\end{array}\right] \mathbf{y}$.

4 (Completion). Plot each system above in Geogebra (link) and characterize each as a source, a sink, a saddle, a spiral source, a spiral sink, an ellipse, or none of the above.

