1. Two questions that aren’t quite the same:
 a) Find the absolute maximum of the function \(f(x) = 1 - x^2 \).
 b) Prove that the function \(f(x) = 1 - x^2 \) has an absolute maximum.

Definition 1. The function \(f \) is *bounded above* if there is a number \(M \) such that \(f(x) \leq M \) for every \(x \) in the domain of \(f \).

2. A third version of the question: prove that the function \(f(x) = 1 - x^2 \) is bounded above.
Definition 2. The function \(f \) is \textit{bounded} if there is a number \(M \) such that
\[
|f(x)| \leq M
\]
for every \(x \) in the domain of \(f \).

3. Prove that the function \(f(x) = 1 - x^2 \) is not bounded.