Math 301

Relations

Definition 1. A relation R on a set A is an *equivalence relation* if it is reflexive ($\forall a \in A, aRa$), symmetric ($\forall a, b \in A, aRb \implies bRa$), and transitive ($\forall a, b, c \in A, aRb \land bRc \implies aRc$). If R is an equivalence relation on A and $a \in A$, then the *equivalence class of* a is

$$[a] = \{x \in A : xRa\}$$

- **1.** Consider the following relation on \mathbb{Z} : $R = \{(x, y) : x^2 \equiv y^2 \pmod{7}\}.$
 - a) Prove that R is an equivalence relation.
 - b) Prove that xRy if and only if $x \equiv \pm y \pmod{7}$.
 - c) Find all of the equivalence classes for this relation (note that this is 4 different equivalence classes).

Definition 2. A *partition* of a set A is a set of nonempty subsets of A such that both of the following hold:

- 1. the union of the subsets is A;
- 2. the intersection of any two of the subsets is \emptyset .
- **2.** Verify that your equivalence classes in 1c form a partition of \mathbb{Z} .

3. We proved that for any $n \in \mathbb{N}$, the relation $\equiv \pmod{n}$ is an equivalence relation on \mathbb{Z} . The following questions deal with this relation.

- a) What are the equivalence classes of this relation? How many are there?
- b) Let $a, b \in \mathbb{Z}$. Prove that for any $x \in [a]$ and any $y \in [b]$, it follows that [x + y] = [a + b].
- c) Under the same hypotheses as c, does it follow that [xy] = [ab]? Prove you are right.
- d) Find the equivalence class of 17(134 51) for the relation $\equiv \pmod{7}$ (this should be easy if you use parts b and c).
- e) (A GRE Mathematics Subject Test question). Find the units digit of the standard decimal expansion of 7^{25} .