
PORTFOLIO PROOFS 

The first section contains definitions relevant to problems in the following sections. Section 2 contains 
statements for you to prove (or, in subsection D, either prove or disprove). 

1. Definitions 

Definition 1. limx→a f(x) = L if for every number � > 0 there is a number δ > 0 such that 

0 < |x − a| < δ =⇒ |f(x) − L| < �. 

Definition 2. Let a, b ∈ N. The least common multiple of a and b is the smallest natural number 
divisible by both a and b (and it is written lcm(a, b)). 

Definition 3. Integers a and b are relatively prime if their only common divisors are 1 and −1. 

Definition 4. The Fibonacci sequence is defined recursively by F0 = 0, F1 = 1, and for n ≥ 2, Fn = 
Fn−1 + Fn−2. The sequence is thus 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . . 

2. Proofs 

A. Direct and contrapositive proofs. 

A.1. Let a ∈ Z. If a2 is not divisible by 4, then a is odd. 

1 
A.2. Let x ∈ R. If x > 0, then x + ≥ 2. 

x 

A.3. Suppose n ∈ Z. If n is odd, then 8 | (n2 − 1). � � 
1 

A.4. Use the definition of the limit (1) to prove that lim x sin = 0. 
x→0 x � � 

1 
A.5. Use the definition of the limit (1) to prove that lim sin =6 0. 

x→0 x 

A.6. Prove that if n ∈ N and n ≥ 2, then the numbers n! +2, n! + 3, n! + 4, . . . , n! + n are all composite. 
(This means that n! + 2, n! + 3, n! + 4, . . . , n! + n is a sequence of n − 1 consecutive composite numbers, 
thus showing that there are arbitrarily large gaps between prime numbers). 

B. Proofs by contradiction and non-conditional statements. 

B.1. The cube root of 3 is irrational. 

B.2. Suppose a, b, p ∈ Z and p is prime. If p | ab, then p | a or p | b. 

B.3. For every integer n, at least one of n, n + 1, or n + 2 is divisible by 3. (This requires a detailed proof, 
not the informal argument we used in class on October 12). 

B.4. For any natural numbers a and b, a = lcm(a, b) if and only if b | a. 

B.5. Let C be a circle in R2 centered at (1, 1). Then either (2, 3) ∈/ C or (−2, 2) ∈/ C. 

1 



C. Proofs and disproofs. Determine if the statement is true and either prove or disprove it. 

C.1. There are integers m and n such that m2 + mn + n2 is a perfect square. 

C.2. If n ∈ Z, then 4 - (n2 − 3). 

C.3. There is a natural number n such that 11 | (2n − 1). 

C.4. Suppose A, B, and C are sets. If A × C ⊆ B × C, then A ⊆ B. 

C.5. For any sets A, B, and C, (A ∩ B) × C = (A × C) ∩ (B × C). 

D. Induction I. Xn 
1 

D.1. For any n ∈ N, i2 = n(n + 1)(2n + 1). 
6 

i=1 

D.2. Any two successive Fibonacci numbers are relatively prime (see definitions 3 and 4). 

D.3. Prove that (1 + 2 + 3 + · · · + n)2 = 13 + 23 + 33 + · · · + n3 for every n ∈ N. 

E. Induction II. 

E.1. Let n ∈ N. If n ≥ 12, then there are non-negative integers a and b such that n = 4a + 5b. � � 

E.2. Consider the 2 × 2 matrix A = 
1 1 

. Prove that for any n ∈ N,
1 0 � � 

Fn+1 FnAn = 
Fn Fn−1 

(where Fk is the kth term of the Fibonacci sequence 4). 

E.3. Define a new function on the positive real numbers:Z ∞ 

tx−1Γ(x) = e −tdt. 
0 

Prove that if n ∈ N, then√ Γ(n + 1) = n! (so that this function is a version of the factorial for non-integers; 
interestingly, Γ(1/2) = π). Hint: integration by parts. 

F. Uncategorized proofs. 

F.1. Every odd integer is the difference of two squares. 

F.2. Let a, b ∈ Z and let d = gcd(a, b). Then {ma + nb : m, n ∈ Z} = {dn : n ∈ Z}. 

F.3. Let n ∈ N. Then any set of n integers has a subset whose sum is divisible by n. 

F.4. Prove that the function f : N × N → N defined by f(x, y) = 2x−1(2y − 1) is a bijection. 
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