PORTFOLIO PROOFS

The first section contains definitions relevant to problems in the following sections. Section 2 contains
statements for you to prove (or, in subsection D, either prove or disprove).

1. DEFINITIONS

Definition 1. lim, ,, f(z) = L if for every number € > 0 there is a number ¢ > 0 such that
O<|z—a|<d = |f(x)—L|<e

Definition 2. Let a,b € N. The least common multiple of a and b is the smallest natural number
divisible by both @ and b (and it is written lem(a, b)).

Definition 3. Integers a and b are relatively prime if their only common divisors are 1 and —1.
Definition 4. The Fibonacci sequence is defined recursively by Fy = 0, F; = 1, and for n > 2, F,, =
F, 1+ F,_5. The sequence is thus 0,1,1,2,3,5,8,13,21,34,55,89,....

2. PROOFS

A. Direct and contrapositive proofs.

A.1. Let a € Z. If a® is not divisible by 4, then a is odd.
1

A2. Let z e R. If x >0, then x + — > 2.
T

A.3. Suppose n € Z. If n is odd, then 8 | (n* —1).

T

1
A .4. Use the definition of the limit to prove that lin[l) x sin (—> = 0.
T—

1
A.5. Use the definition of the limit to prove that lin% sin (—> # 0.
T— €T

A.6. Prove that if n € N and n > 2, then the numbers n! 4+ 2, n! +3, n! +4, ..., n! +n are all composite.
(This means that n! +2, n! + 3, n! +4, ..., n! + n is a sequence of n — 1 consecutive composite numbers,
thus showing that there are arbitrarily large gaps between prime numbers).

B. Proofs by contradiction and non-conditional statements.
B.1. The cube root of 3 is irrational.
B.2. Suppose a,b,p € Z and p is prime. If p | ab, then p | a or p | b.

B.3. For every integer n, at least one of n, n+ 1, or n+ 2 is divisible by 3. (This requires a detailed proof,
not the informal argument we used in class on October 12).

B.4. For any natural numbers a and b, a = lem(a, b) if and only if b | a.

B.5. Let C be a circle in R? centered at (1,1). Then either (2,3) ¢ C or (—=2,2) ¢ C.



C. Proofs and disproofs. Determine if the statement is true and either prove or disprove it.
C.1. There are integers m and n such that m? + mn + n? is a perfect square.

C.2. If n € Z, then 41 (n* — 3).

C.3. There is a natural number n such that 11 | (2" — 1).

C.4. Suppose A, B, and C are sets. If Ax C C B x C, then A C B.

C.5. For any sets A, B, and C, (ANB) xC = (AxC)N (B xC).

D. Induction I.

D.1. For any n € N, Zz::z'z = %n(n +1)(2n +1).

D.2. Any two successive Fibonacci numbers are relatively prime (see definitions |3| and .
D.3. Prove that (14+2+3+---+n)*=1>+2+3>+--- +n3 for every n € N.

E. Induction II.

E.1. Let n € N. If n > 12, then there are non-negative integers a and b such that n = 4a + 5b.

11
10

n __ Fn+1 Fn

(where Fj, is the k'™ term of the Fibonacci sequence 4)).

E.2. Consider the 2 x 2 matrix A = < ) Prove that for any n € N,

E.3. Define a new function on the positive real numbers:

F(:L'):/ t" e tdt.
0

Prove that if n € N, then I'(n + 1) = n! (so that this function is a version of the factorial for non-integers;
interestingly, I'(1/2) = /7). Hint: integration by parts.

F. Uncategorized proofs.

F.1. Every odd integer is the difference of two squares.

F.2. Let a,b € Z and let d = ged(a,b). Then {ma +nb: m,n € Z} ={dn : n € Z}.
F.3. Let n € N. Then any set of n integers has a subset whose sum is divisible by n.

F.4. Prove that the function f: N x N — N defined by f(z,y) = 2°71(2y — 1) is a bijection.
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