PORTFOLIO PROOFS

The first section contains definitions relevant to problems in the following sections. Section 2 contains statements for you to prove (or, in subsection D, either prove or disprove).

1. Definitions

Definition 1. $\lim _{x \rightarrow a} f(x)=L$ if for every number $\epsilon>0$ there is a number $\delta>0$ such that

$$
0<|x-a|<\delta \Longrightarrow|f(x)-L|<\epsilon
$$

Definition 2. Let $a, b \in \mathbb{N}$. The least common multiple of a and b is the smallest natural number divisible by both a and b (and it is written $\operatorname{lcm}(a, b)$).

Definition 3. Integers a and b are relatively prime if their only common divisors are 1 and -1 .
Definition 4. The Fibonacci sequence is defined recursively by $F_{0}=0, F_{1}=1$, and for $n \geq 2, F_{n}=$ $F_{n-1}+F_{n-2}$. The sequence is thus $0,1,1,2,3,5,8,13,21,34,55,89, \ldots$.

2. Proofs

A. Direct and contrapositive proofs.

A.1. Let $a \in \mathbb{Z}$. If a^{2} is not divisible by 4 , then a is odd.
A.2. Let $x \in \mathbb{R}$. If $x>0$, then $x+\frac{1}{x} \geq 2$.
A.3. Suppose $n \in \mathbb{Z}$. If n is odd, then $8 \mid\left(n^{2}-1\right)$.
A.4. Use the definition of the limit $\sqrt{1}$ to prove that $\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=0$.
A.5. Use the definition of the limit 1 to prove that $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right) \neq 0$.
A.6. Prove that if $n \in \mathbb{N}$ and $n \geq 2$, then the numbers $n!+2, n!+3, n!+4, \ldots, n!+n$ are all composite. (This means that $n!+2, n!+3, n!+4, \ldots, n!+n$ is a sequence of $n-1$ consecutive composite numbers, thus showing that there are arbitrarily large gaps between prime numbers).

B. Proofs by contradiction and non-conditional statements.

B.1. The cube root of 3 is irrational.
B.2. Suppose $a, b, p \in \mathbb{Z}$ and p is prime. If $p \mid a b$, then $p \mid a$ or $p \mid b$.
B.3. For every integer n, at least one of $n, n+1$, or $n+2$ is divisible by 3. (This requires a detailed proof, not the informal argument we used in class on October 12).
B.4. For any natural numbers a and $b, a=\operatorname{lcm}(a, b)$ if and only if $b \mid a$.
B.5. Let C be a circle in \mathbb{R}^{2} centered at $(1,1)$. Then either $(2,3) \notin C$ or $(-2,2) \notin C$.
C. Proofs and disproofs. Determine if the statement is true and either prove or disprove it.
C.1. There are integers m and n such that $m^{2}+m n+n^{2}$ is a perfect square.
C.2. If $n \in \mathbb{Z}$, then $4 \nmid\left(n^{2}-3\right)$.
C.3. There is a natural number n such that $11 \mid\left(2^{n}-1\right)$.
C.4. Suppose A, B, and C are sets. If $A \times C \subseteq B \times C$, then $A \subseteq B$.
C.5. For any sets A, B, and $C,(A \cap B) \times C=(A \times C) \cap(B \times C)$.

D. Induction I.

D.1. For any $n \in \mathbb{N}, \sum_{i=1}^{n} i^{2}=\frac{1}{6} n(n+1)(2 n+1)$.
D.2. Any two successive Fibonacci numbers are relatively prime (see definitions 3 and 4).
D.3. Prove that $(1+2+3+\cdots+n)^{2}=1^{3}+2^{3}+3^{3}+\cdots+n^{3}$ for every $n \in \mathbb{N}$.
E. Induction II.
E.1. Let $n \in \mathbb{N}$. If $n \geq 12$, then there are non-negative integers a and b such that $n=4 a+5 b$.
E.2. Consider the 2×2 matrix $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$. Prove that for any $n \in \mathbb{N}$,

$$
A^{n}=\left(\begin{array}{cc}
F_{n+1} & F_{n} \\
F_{n} & F_{n-1}
\end{array}\right)
$$

(where F_{k} is the $k^{\text {th }}$ term of the Fibonacci sequence 4).
E.3. Define a new function on the positive real numbers:

$$
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t
$$

Prove that if $n \in \mathbb{N}$, then $\Gamma(n+1)=n$! (so that this function is a version of the factorial for non-integers; interestingly, $\Gamma(1 / 2)=\sqrt{\pi})$. Hint: integration by parts.

F. Uncategorized proofs.

F.1. Every odd integer is the difference of two squares.
F.2. Let $a, b \in \mathbb{Z}$ and let $d=\operatorname{gcd}(a, b)$. Then $\{m a+n b: m, n \in \mathbb{Z}\}=\{d n: n \in \mathbb{Z}\}$.
F.3. Let $n \in \mathbb{N}$. Then any set of n integers has a subset whose sum is divisible by n.
F.4. Prove that the function $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ defined by $f(x, y)=2^{x-1}(2 y-1)$ is a bijection.

