Statements and open sentences

Statements:

- 2 is an even integer.
- 3 is an even integer.
- 4 is an even integer.

Statements and open sentences

Statements:

- 2 is an even integer.
- 3 is an even integer.
- 4 is an even integer.
$P(x): x$ is an even integer.

Statements and open sentences

Statements:

- 2 is an even integer.
- 3 is an even integer.
- 4 is an even integer.
$P(x): x$ is an even integer.
$P(x)$ is not a statement; it is an open sentence (with a free variable).
$P(7)$ is a statement.

Statements and open sentences

Statements:

- 2 is an even integer.
- 3 is an even integer.
- 4 is an even integer.
$P(x): x$ is an even integer.
$P(x)$ is not a statement; it is an open sentence (with a free variable).
$P(7)$ is a statement.
$R(f, g): f$ is the derivative of g.

Famous statements

Goldbach's conjecture (1742): every even integer greater than 2 is the sum of two prime numbers.

Twin primes conjecture: there are infinitely many primes p such that $p+2$ is also prime.

Riemann hypothesis: the nontrivial zeros of the Riemann zeta function have real part equal to $\frac{1}{2}$.

Banach-Tarski paradox (1924): A (solid) sphere may be decomposed into finitely many sets which can be rearranged to form two spheres, each of which is just as large as the original sphere. https://youtu.be/s86-Z-CbaHA

Examples

1. If you eat your vegetables, then you'll get dessert.

Examples

1. If you eat your vegetables, then you'll get dessert.
2. If you got dessert, then you must have eaten your vegetables.

Examples

1. If you eat your vegetables, then you'll get dessert.
2. If you got dessert, then you must have eaten your vegetables.
3. If you are 20 years old, then you were born in 1998 or 1997.

Examples

1. If you eat your vegetables, then you'll get dessert.
2. If you got dessert, then you must have eaten your vegetables.
3. If you are 20 years old, then you were born in 1998 or 1997.
4. If you were born in 1998 or 1997, then you are 20 years old.

Examples

1. If you eat your vegetables, then you'll get dessert.
2. If you got dessert, then you must have eaten your vegetables.
3. If you are 20 years old, then you were born in 1998 or 1997.
4. If you were born in 1998 or 1997, then you are 20 years old.
5. An integer is even if and only if it is divisible by 2.

Vocabulary

Definition

In the statment $P \Longrightarrow Q, P$ is the antecedent and Q is the consequent.

1. If the antecedent is true, then the consequent must also be true.
2. Converse?
3. If the antecedent is false, then the statement is true regardless of the consequent.

Quantifiers

Open sentence $P(x)$. Statements:

- $\forall x, P(x)$ "for all $\mathrm{x}, P(x)$ "
- $\exists x, P(X)$ "there is an x such that $P(x)$ "

Examples involving quantifiers

1. For every real number $x, x^{2}>0$.

Examples involving quantifiers

1. For every real number $x, x^{2}>0$.
2. The polynomial $x^{3}+x^{2}+x+1$ has a real root.

Examples involving quantifiers

1. For every real number $x, x^{2}>0$.
2. The polynomial $x^{3}+x^{2}+x+1$ has a real root.
3. Every degree three polynomial has a real root.

Examples involving quantifiers

1. For every real number $x, x^{2}>0$.
2. The polynomial $x^{3}+x^{2}+x+1$ has a real root.
3. Every degree three polynomial has a real root.
4. $\lim _{x \rightarrow a} f(x)=L$ if and only if for every number $\epsilon>0$ there is a number $\delta>0$ such that

$$
|x-a|<\delta \Longrightarrow|f(x)-L|<\epsilon
$$

