Quantifiers

Definition

 $\lim_{x\to a} f(x) = L$ if (and only if) for every number $\epsilon > 0$ there is a number $\delta > 0$ such that

$$0 < |x - a| < \delta \implies |f(x) - L| < \epsilon.$$

What does it mean to say $\lim_{x\to a} f(x) \neq L$?

Definition

The n^{th} Fermat number is

$$F_n = 2^{2^n} + 1$$

(for
$$n = 0, 1, 2, ...$$
).

►
$$F_0 = 3$$

► $F_1 = 5$

$$= 17$$

► $F_4 = 65537$

►
$$F_2 = 17$$

► $F_3 = 257$

Conjecture (Fermat 1640)

 F_n is always prime.

Translations (Eng to Math)

- 1. π is not the root of any polynomial.
- 2. For any number r, if $x^r = 1$, then |x| = 1.
- 3. Bertrand's postulate: There's always a prime between n and 2n.

Translations (Math to Eng)

- 1. $\forall M \in \mathbb{N}, \ \exists x \in P, \ x > M$ (where P is the set of prime numbers)
- 2. $\exists X \in \mathcal{P}(\mathbb{N}), \ \forall Y \in \mathcal{P}(\mathbb{N}), \ Y \subseteq X$

3.
$$\forall x_1, x_2 \in \mathbb{R}, \exists y \in \mathbb{R}, \left[|x_1 - y| = |x_2 - y| \land (\forall z \in \mathbb{R}, |x_1 - z| = |x_2 - z| \implies z = y) \right]$$