TFAE

Theorem

Let f be a function on \mathbb{R} such that $\lim_{x\to\infty}\left[\frac{f(x)}{x}\right]$ exists. The following are equivalent:

- $1. \lim_{x \to \infty} \left[\frac{f(x)}{x} \right] = 1$
- $2. \lim_{x \to \infty} \left[\frac{x}{f(x)} \right] = 1$
- 3. $\lim_{x \to \infty} \left[\frac{f(x)}{x} \right] \le 1$ and $\lim_{x \to \infty} \left| \frac{x}{f(x)} \right| \le 1$

This means $1 \iff 2$ and $1 \iff 3$ and $2 \iff 3$.

TFAE

Theorem

Let f be a function on \mathbb{R} such that $\lim_{x\to\infty}\left[\frac{f(x)}{x}\right]$ exists. The following are equivalent:

- $1. \lim_{x \to \infty} \left[\frac{f(x)}{x} \right] = 1$
- 2. $\lim_{x \to \infty} \left[\frac{x}{f(x)} \right] = 1$
- 3. $\lim_{x \to \infty} \left[\frac{f(x)}{x} \right] \le 1$ and $\lim_{x \to \infty} \left[\frac{x}{f(x)} \right] \le 1$

This means $1 \iff 2$ and $1 \iff 3$ and $2 \iff 3$.

Question

Do we have to do 6 proofs?