Perfect numbers

Definition

A natural number n is perfect if it is equal to the sum of its proper divisors.

Perfect numbers

Definition

A natural number n is perfect if it is equal to the sum of its proper divisors.

Examples:

$$
\begin{aligned}
6 & =1+2+3 \\
28 & =1+2+4+7+14 \\
496 & =1=2+4+8+16+31+62+124+248
\end{aligned}
$$

Non-examples:

$$
\begin{aligned}
& 4 \neq 1+2=3 \\
& 9 \neq 1+3=4 \\
& 12 \neq 1+2+3+4+6=16
\end{aligned}
$$

Who cares?

- Philo of Alexandria (~ 20 BCE-50 CE), a Jewish philosopher, claimed the world was created in 6 days that the moon orbits in 28 days because 6 and 28 are perfect.
- Greek mathematicians like Nichomachus (~ 100 CE) knew the perfect numbers on the last slide and the fourth: 8128.
- Egyptian mathematician Ismail ibn Fallūs (1194-1252 CE) knew the next three perfect numbers: $33,550,336$; $8,589,869,056$; and $137,438,691,328$.
- Europeans were interested by the $15^{\text {th }}$ century when an unknown mathematician (re)discovered 33, 550, 336.

And Euclid

Theorem (Euclid)
Let $n \in \mathbb{N}$. If $2^{n}-1$ is prime, then $2^{(n-1)}\left(2^{n}-1\right)$ is perfect.

And Euclid

Theorem (Euclid)

Let $n \in \mathbb{N}$. If $2^{n}-1$ is prime, then $2^{(n-1)}\left(2^{n}-1\right)$ is perfect.

Definition

We define the following sets:

- P is the set of perfect numbers;
- $S=\left\{2^{(n-1)}\left(2^{n}-1\right): n \in \mathbb{N}\right.$ and $2^{n}-1$ is prime $\}$;

Question

What relationship does Euclid's theorem establish between S and P ?

Ibn al-Haytham and Euler too

Definition

We define the following sets:

- P is the set of perfect numbers;
- $S=\left\{2^{(n-1)}\left(2^{n}-1\right): n \in \mathbb{N}\right.$ and $2^{n}-1$ is prime $\}$;
- E is the set of even numbers.

Conjecture (Ibn al-Haytham, ~ 1000 CE) $(P \cap E) \subseteq S$.

Ibn al-Haytham and Euler too

Definition

We define the following sets:

- P is the set of perfect numbers;
- $S=\left\{2^{(n-1)}\left(2^{n}-1\right): n \in \mathbb{N}\right.$ and $2^{n}-1$ is prime $\}$;
- E is the set of even numbers.

Conjecture (Ibn al-Haytham, ~ 1000 CE) $(P \cap E) \subseteq S$.

Proved by Euler in the $18^{\text {th }}$ century.
Theorem (Euclid-Euler)
$S=P \cap E$.

Open questions

Question
Are there infinitely many perfect numbers?

Open questions

Question
Are there infinitely many perfect numbers?

Definition

A prime number of the form $2^{n}-1$ is called a Mersenne prime.

Question

Are there infinitely many Mersenne primes?

Open questions

Question

Are there infinitely many perfect numbers?

Definition

A prime number of the form $2^{n}-1$ is called a Mersenne prime.

Question

Are there infinitely many Mersenne primes?
Question
Are there any odd perfect numbers?

