Perfect numbers

Definition

A natural number n is **perfect** if it is equal to the sum of its proper divisors.

Perfect numbers

Definition

A natural number n is **perfect** if it is equal to the sum of its proper divisors.

Examples:

$$6 = 1 + 2 + 3$$

$$28 = 1 + 2 + 4 + 7 + 14$$

$$496 = 1 = 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248$$

Non-examples:

$$4 \neq 1 + 2 = 3$$

9 \ne 1 + 3 = 4
12 \ne 1 + 2 + 3 + 4 + 6 = 16

Who cares?

- ► Philo of Alexandria (~ 20 BCE-50 CE), a Jewish philosopher, claimed the world was created in 6 days that the moon orbits in 28 days because 6 and 28 are perfect.
- ► Greek mathematicians like Nichomachus (~ 100 CE) knew the perfect numbers on the last slide and the fourth: 8128.
- Egyptian mathematician Ismail ibn Fallūs (1194–1252 CE) knew the next three perfect numbers: 33,550,336; 8,589,869,056; and 137,438,691,328.
- ► Europeans were interested by the 15th century when an unknown mathematician (re)discovered 33,550,336.

And Euclid

Theorem (Euclid)

Let $n \in \mathbb{N}$. If $2^n - 1$ is prime, then $2^{(n-1)}(2^n - 1)$ is perfect.

And Euclid

Theorem (Euclid)

Let $n \in \mathbb{N}$. If $2^n - 1$ is prime, then $2^{(n-1)}(2^n - 1)$ is perfect.

Definition

We define the following sets:

P is the set of perfect numbers;

$$\blacktriangleright \hspace{0.1 in} S = \left\{ 2^{(n-1)} \left(2^n - 1 \right) : n \in \mathbb{N} \hspace{0.1 in} \text{and} \hspace{0.1 in} 2^n - 1 \hspace{0.1 in} \text{is prime} \right\};$$

Question

What relationship does Euclid's theorem establish between S and P?

Ibn al-Haytham and Euler too

Definition

We define the following sets:

► *P* is the set of perfect numbers;

►
$$S = \left\{ 2^{(n-1)} \left(2^n - 1 \right) : n \in \mathbb{N} \text{ and } 2^n - 1 \text{ is prime}
ight\};$$

• *E* is the set of even numbers.

Conjecture (Ibn al-Haytham, ~ 1000 CE) $(P \cap E) \subseteq S$.

Ibn al-Haytham and Euler too

Definition

We define the following sets:

► *P* is the set of perfect numbers;

•
$$S = \left\{ 2^{(n-1)} \left(2^n - 1 \right) : n \in \mathbb{N} \text{ and } 2^n - 1 \text{ is prime}
ight\};$$

• *E* is the set of even numbers.

```
Conjecture (Ibn al-Haytham, \sim 1000 CE)
(P \cap E) \subseteq S.
```

Proved by Euler in the 18th century.

```
Theorem (Euclid-Euler)
```

 $S = P \cap E$.

Open questions

Question

Are there infinitely many perfect numbers?

Open questions

Question

Are there infinitely many perfect numbers?

Definition

A prime number of the form $2^n - 1$ is called a **Mersenne prime**.

Question

Are there infinitely many Mersenne primes?

Open questions

Question

Are there infinitely many perfect numbers?

Definition

A prime number of the form $2^n - 1$ is called a **Mersenne prime**.

Question

Are there infinitely many Mersenne primes?

Question

Are there any odd perfect numbers?