Proof?

Theorem
If a and b are real numbers, then $a+b \geq 2 \sqrt{a b}$.

Proof.

Suppose, by way of contradiction, that $a, b \in \mathbb{R}$ and $a+b<2 \sqrt{a b}$. It follows that

$$
(a+b)^{2}<(2 \sqrt{a b})^{2}
$$

Thus

$$
a^{2}+2 a b+b^{2}<4 a b
$$

Consequently

$$
(a-b)^{2}=a^{2}-2 a b+b^{2}<0 .
$$

This is a contradiction since a real number squared must be at least 0 .

Perfect numbers

Definitions

A natural number n is perfect if it is equal to the sum of its proper divisors.

Examples:

$$
\begin{aligned}
6 & =1+2+3 \\
28 & =1+2+4+7+14 \\
496 & =1=2+4+8+16+31+62+124+248
\end{aligned}
$$

Non-examples:

$$
\begin{aligned}
& 4 \neq 1+2=3 \\
& 9 \neq 1+3=4 \\
& 12 \neq 1+2+3+4+6=16
\end{aligned}
$$

The Euclid-Euler Theorem

Definitions

- P is the set of perfect numbers;
- $S=\left\{2^{(n-1)}\left(2^{n}-1\right): n \in \mathbb{N}\right.$ and $2^{n}-1$ is prime $\}$;
- E is the set of even numbers.

Theorem (Euclid-Euler)
$S=P \cap E$.

$S \subseteq P \cap E$

Theorem
$S \subseteq P \cap E$.

Proof.

Let $a \in S$. Then $a=2^{(n-1)}\left(2^{n}-1\right)$ with $2^{n}-1$ is prime.

- Why is $a \in E$?
- Why is $a \in P$? (Hint: use the formula $\sum_{i=0}^{n-1} r^{i}=\frac{1-r^{n}}{1-r}$ to add the divisors of a).
We have shown that $a \in E$ and $a \in P$. It follows that $a \in P \cap E$ (definition of intersection). Therefore $S \subseteq P \cap E$.

