Proof?

Theorem

If a and b are real numbers, then $a + b \ge 2\sqrt{ab}$.

Proof.

Suppose, by way of contradiction, that $a, b \in \mathbb{R}$ and $a + b < 2\sqrt{ab}$. It follows that

$$(a+b)^2 < \left(2\sqrt{ab}\right)^2$$
.

Thus

$$a^2 + 2ab + b^2 < 4ab.$$

Consequently

$$(a-b)^2 = a^2 - 2ab + b^2 < 0.$$

This is a contradiction since a real number squared must be at least 0.

Perfect numbers

Definitions

A natural number n is **perfect** if it is equal to the sum of its proper divisors.

Examples:

$$6 = 1 + 2 + 3$$

$$28 = 1 + 2 + 4 + 7 + 14$$

$$496 = 1 = 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248$$

Non-examples:

$$4 \neq 1 + 2 = 3$$

9 \ne 1 + 3 = 4
12 \ne 1 + 2 + 3 + 4 + 6 = 16

The Euclid-Euler Theorem

Definitions

► *P* is the set of perfect numbers;

►
$$S = \left\{ 2^{(n-1)} \left(2^n - 1 \right) : n \in \mathbb{N} \text{ and } 2^n - 1 \text{ is prime}
ight\};$$

• *E* is the set of even numbers.

Theorem (Euclid-Euler)

 $S = P \cap E$.

$S \subseteq P \cap E$

Theorem

 $S \subseteq P \cap E$.

Proof.

Let $a \in S$. Then $a = 2^{(n-1)} (2^n - 1)$ with $2^n - 1$ is prime.

• Why is
$$a \in P$$
? (Hint: use the formula $\sum_{i=0}^{n-1} r^i = \frac{1-r^n}{1-r}$ to add the divisors of a).

We have shown that $a \in E$ and $a \in P$. It follows that $a \in P \cap E$ (definition of intersection). Therefore $S \subseteq P \cap E$.