PROOFS II

1. Let $a, b \in \mathbb{Z}$. Prove that if ab is odd, then both a and b are odd.

- **2.** Let $a \in \mathbb{N}$.
 - a) Prove that if $2^a 1$ is prime, then a is odd or a = 2.

b) Is the converse true?

Date: September 28, 2018.

Definition. Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$.

- We say that a and b are congruent modulo n if n|(a b). This is expressed in symbols as $a \equiv b \pmod{n}$.
- The congruence class of a modulo n is $[a]_n = \{x \in \mathbb{Z} : x \equiv a \pmod{n}\}.$

3. By definition, an integer *a* is congruent to 0 modulo 2 if 2|(a - 0), in other words, if *a* is even. Thus $[0]_2 = \{\dots, -4, -2, 0, 2, 4, \dots\}$.

a) What is the congruence class of 4 modulo 2? Is this a new set?

- b) Identify the congruence class of 1 modulo 2. Have we found all the congruence classes modulo 2?
- c) Identify the congruence classes of 0, 1, and 2 modulo 3. Are there any other congruence classes modulo 3?
- d) How many congruence classes do you expect to find modulo 4?
- 4. The congruence classes modulo 10 are $[0]_{10}$, $[1]_{10}$, $[2]_{10}$, $[3]_{10}$, $[4]_{10}$, $[5]_{10}$, $[6]_{10}$, $[7]_{10}$, $[8]_{10}$, and $[9]_{10}$. a) Let $n \in \mathbb{N}$. What are the possible congruence classes (from the list above) of 3^n modulo 10?

b) What is the last digit of 3^{2018} ?

Challenge. Let $a, b \in \mathbb{Z}$. Prove that $(a + b)^3 \equiv a^3 + b^3 \pmod{3}$.