PROOFS II

1. Let $a, b \in \mathbb{Z}$. Prove that if $a b$ is odd, then both a and b are odd.
2. Let $a \in \mathbb{N}$.
a) Prove that if $2^{a}-1$ is prime, then a is odd or $a=2$.
b) Is the converse true?

Definition. Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$.

- We say that a and b are congruent modulo n if $n \mid(a-b)$. This is expressed in symbols as $a \equiv b(\bmod n)$.
- The congruence class of a modulo n is $[a]_{n}=\{x \in \mathbb{Z}: x \equiv a(\bmod n)\}$.

3. By definition, an integer a is congruent to 0 modulo 2 if $2 \mid(a-0)$, in other words, if a is even. Thus $[0]_{2}=\{\ldots,-4,-2,0,2,4, \ldots\}$.
a) What is the congruence class of 4 modulo 2 ? Is this a new set?
b) Identify the congruence class of 1 modulo 2 . Have we found all the congruence classes modulo 2 ?
c) Identify the congruence classes of 0,1 , and 2 modulo 3 . Are there any other congruence classes modulo 3 ?
d) How many congruence classes do you expect to find modulo 4 ?
4. The congruence classes modulo 10 are $[0]_{10},[1]_{10},[2]_{10},[3]_{10},[4]_{10},[5]_{10},[6]_{10},[7]_{10},[8]_{10}$, and $[9]_{10}$.
a) Let $n \in \mathbb{N}$. What are the possible congruence classes (from the list above) of 3^{n} modulo 10 ?
b) What is the last digit of 3^{2018} ?

Challenge. Let $a, b \in \mathbb{Z}$. Prove that $(a+b)^{3} \equiv a^{3}+b^{3}(\bmod 3)$.

